https://medium.com/ai³-theory-practice-business
https://vc.ru/31616-itogi-2017-goda-v-iskusstvennom-intellekte
https://habrahabr.ru/post/343800/
Вероятностная интерпретация классических моделей машинного обучения
https://habrahabr.ru/post/347184/
https://news.ycombinator.com/item?id=16493489
https://habrahabr.ru/post/332000/ Keras
https://spandan-madan.github.io/DeepLearningProject/
https://sadanand-singh.github.io/posts/treebasedmodels/
https://hackernoon.com/machine-learning-with-javascript-part-1-9b97f3ed4fe5
http://blog.endpoint.com/2017/05/recognizing-handwritten-digits-quick.html
https://habrahabr.ru/company/ods/blog/325654/ PCA , clustering
https://tryolabs.com/blog/2017/05/18/magazine-a-collection-of-our-machine-learning-articles/
https://www.reddit.com/r/MachineLearning+learnmachinelearning/
https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
http://www.datasciencecentral.com/profiles/blogs/neural-networks-for-machine-learning
https://sites.google.com/site/mikelubinsky/ml101
https://sites.google.com/site/mikelubinsky/ml/machinelearning
https://sites.google.com/site/mikelubinsky/ml-1
https://habrahabr.ru/post/326656/
https://habrahabr.ru/company/spbifmo/blog/326894/
http://setosa.io/ev explain visually
https://code.facebook.com/posts/1373769912645926/faiss-a-library-for-efficient-similarity-search/
http://mlwhiz.com/blog/2017/03/26/top_data_science_resources_on_the_internet_right_now/
http://www.learndatasci.com/data-science-statistics-using-python/
https://tryolabs.com/blog/2016/12/06/major-advancements-deep-learning-2016/
https://arxiv.org/abs/1704.01568
probabilistic graphical models
https://news.ycombinator.com/item?id=13982860
https://news.ycombinator.com/item?id=14178399
https://www.reddit.com/r/MachineLearning+learnmachinelearning/
https://elitedatascience.com/learn-machine-learning
https://habrahabr.ru/post/322188/ Обзор материалов по машинному обучению (13-20 февраля 2017)
https://habrahabr.ru/company/ods/blog/322076/ пример линейной регрессии
https://habrahabr.ru/company/ods/blog/323272/ Theano
https://habrahabr.ru/company/ods/blog/325422/
https://habrahabr.ru/company/ods/blog/325416/
https://habrahabr.ru/company/ods/blog/326418/
https://habrahabr.ru/company/google/blog/325896/
https://habrahabr.ru/company/wunderfund/
https://habrahabr.ru/post/324590/
Основательный обзор классики машинного обучения и, конечно же, линейных моделей сделан в книге "Deep Learning" (I. Goodfellow, Y. Bengio, A. Courville, 2016);
Реализация многих алгоритмов машинного обучения с нуля – репозиторий rushter. Рекомендуем изучить реализацию логистической регрессии;
Курс Евгения Соколова по машинному обучению (материалы на GitHub). Хорошая теория, нужна неплохая математическая подготовка;
Курс Дмитрия Ефимова на GitHub (англ.). Тоже очень качественные материалы.
https://xyclade.github.io/MachineLearning/
https://blog.dominodatalab.com/fitting-gaussian-process-models-python/
https://cambridgespark.com/content
Online classes
https://www.datacamp.com/courses/unsupervised-learning-in-python
https://www.datacamp.com/community/blog/new-course-supervised-learning-with-scikit-learn
http://www.learndatasci.com/best-data-science-online-courses/
http://education.parrotprediction.teachable.com/
http://www.johnwittenauer.net/machine-learning-exercises-in-python-part-1/
Apple
SVM
https://sadanand-singh.github.io/posts/svmpython/
https://generalabstractnonsense.com/2017/03/A-quick-look-at-Support-Vector-Machines/
https://news.ycombinator.com/item?id=13939003
https://github.com/dennybritz/reinforcement-learning
http://www.johnwittenauer.net/machine-learning-exercises-in-python-part-8/
https://github.com/eriklindernoren/ML-From-Scratch
https://github.com/rushter/MLAlgorithms
https://drive.google.com/file/d/0B0RLknmL54khQlhGUzFUWEtncTA/view formulas
https://habrahabr.ru/company/wunderfund/blog/320482/
http://www.holehouse.org/mlclass/
https://habrahabr.ru/company/mailru/blog/321360/
higher bias and lower variance
“Ridge regression” will use all predictors in nal model whereas “Lasso regression” can be used for feature selection because coe cient values can be zero.
https://discuss.analyticsvidhya.com/t/di erence-between-ridge-regression-and-lasso-and-its-eect/3000
https://thomaswdinsmore.com/ best analytics blog
https://thomaswdinsmore.com/2017/01/16/the-year-in-machine-learning-part-four/
http://data36.com/ predictive analytics
http://www.unofficialgoogledatascience.com/
http://www.exploredata.net/Downloads/MINE-Application
KERAS
https://news.ycombinator.com/item?id=13872670
https://habrahabr.ru/company/ods/blog/325432/
https://github.com/dasguptar/treelstm.pytorch LSTM in pyTorch
Tensorflow
https://github.com/astorfi/TensorFlow-World-Resources
https://developers.google.com/machine-learning/crash-course/
http://cjalmeida.net/post/tensorflow-mnist/
https://www.youtube.com/watch?v=Rgpfk6eYxJA
https://habrahabr.ru/company/ods/blog/324898/
https://github.com/astorfi/TensorFlow-World-Resources
https://habrahabr.ru/post/326650/
https://machinelearningmastery.com/deep-learning-with-python/
http://adventuresinmachinelearning.com/python-tensorflow-tutorial/
https://escapethematrix.pl/mnist-the-totally-non-clickbait-beginnings/
https://github.com/silicon-valley-data-science/RNN-Tutorial
https://www.tensorflow.org/tutorials/
https://news.ycombinator.com/item?id=13859041
https://habrahabr.ru/post/321946/
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd
http://www.svds.com/getting-started-deep-learning/
https://news.ycombinator.com/item?id=13653819
https://news.ycombinator.com/item?id=13655437
https://www.youtube.com/watch?v=hhJIztWR_vo
Natural Language Processing
https://www.coursera.org/learn/python-text-mining/lecture/zV9nP/naive-bayes-classifiers
https://github.com/oxford-cs-deepnlp-2017/lectures oxford deep NLP
https://habrahabr.ru/company/wunderfund/blog/318454/
https://medium.com/ai-society/jkljlj-7d6e699895c4#.edk6hbs2u
https://en.wikipedia.org/wiki/Language_model
https://arxiv.org/abs/1703.01619
https://gab41.lab41.org/speech-recognition-you-down-with-ctc-8d3b558943f0#.hr6b4uakm
https://news.ycombinator.com/item?id=13588070
https://msdn.microsoft.com/en-us/library/mt762916.aspx
https://en.wikipedia.org/wiki/N-gram
https://tech.yandex.com/speechkit/cloud/doc/dg/concepts/speechkit-dg-recogn-docpage/
https://habrahabr.ru/company/microsoft/blog/321494/
https://habrahabr.ru/company/wunderfund/blog/318454/
https://www.linkedin.com/in/spencerlin1
Word2vec
https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/
https://medium.com/@mishra.thedeepak/word2vec-in-minutes-gensim-nlp-python-6940f4e00980#.ep9xcrxa4
https://habrahabr.ru/post/324686/
http://www.deeplearningweekly.com/blog/demystifying-word2vec
https://medium.com/@mishra.thedeepak/doc2vec-in-a-simple-way-fa80bfe81104#.wqcqqp7qt
https://gab41.lab41.org/python2vec-word-embeddings-for-source-code-3d14d030fe8f#.4vbbixqlu
https://medium.com/ai-society/jkljlj-7d6e699895c4#.mfe6txjrm
Probabilistic programming
http://probabilistic-programming.org/wiki/Home
http://forestdb.org/ Generative models
https://news.ycombinator.com/item?id=13551271
http://blog.fastforwardlabs.com/2017/01/30/the-algorithms-behind-probabilistic-programming.html
https://arxiv.org/abs/1701.02434 Hamiltonian Monte Carlo
Deep learning
https://news.ycombinator.com/item?id=13540214
https://news.ycombinator.com/item?id=13773127
http://wiki.fast.ai/index.php/Course_notes
https://www.youtube.com/watch?v=N4gDikiec8E&feature=youtu.be
https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-choice
http://blog.yhat.com/posts/deep-learning-chess.html
https://github.com/AKSHAYUBHAT/DeepVideoAnalytics
How to approach any problem in machine learning
https://en.m.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
https://news.ycombinator.com/item?id=13821217
https://www.linkedin.com/pulse/approaching-almost-any-machine-learning-problem-abhishek-thakur#
https://habrahabr.ru/company/wunderfund/blog/320482/
http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf
https://www.springboard.com/blog/data-science-process/
https://www.springboard.com/resources/data-scientist-interview-guide
https://hackernoon.com/scikit-learn-cheat-sheet-python-machine-learning-ba69df05804d#.1j74jjfgj Many ML cheat sheets
https://habrahabr.ru/post/320500/ KNIME
https://docs.google.com/spreadsheets/d/1AQvZ7-Kg0lSZtG1wlgbIsrm90HaTZrJGQMz-uKRRlFw/edit#gid=0 datasets for machine learning
https://habrahabr.ru/post/319288/
https://habrahabr.ru/post/320726/ Random forest
https://alexanderdyakonov.wordpress.com/2016/11/14/
http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf
https://dzone.com/refcardz/machine-learning-predictive
https://docs.microsoft.com/en-in/azure/machine-learning/machine-learning-algorithm-cheat-sheet
https://github.com/rcompton/ml_cheat_sheet
http://www.jacksimpson.co/category/data-science/machine-learning/
http://www.jeannicholashould.com/what-i-learned-implementing-a-classifier-from-scratch.html
http://zderadicka.eu/revival-of-neural-networks/#more-1429
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.youtube.com/watch?v=2pWv7GOvuf0 Reinforcement learning
http://course.fast.ai/start.html another deep learning
2. CS231n - Convolutional Neural Networks for Visual Recognition
3. CS224d - Deep Learning for Natural Language Processing
4. CS321 from Standford (outstanding material by Andrej Karpathy): http://cs231n.github.io/
- Hugo Larochelle videos: https://www.youtube.com/channel/UCiDouKcxRmAdc5OeZdiRwAg
- Michael Nielsen tutorial: http://neuralnetworksanddeeplearning.com/
- Chris Olah blog: http://colah.github.io/
- Keras blog: https://blog.keras.io/
http://work.caltech.edu/telecourse.html
- Goodfellow, Bengio, Courville: http://www.deeplearningbook.org/
https://www.tensorflow.org/versions/r0.10/tutorials/mnist/pros/
https://news.ycombinator.com/item?id=14543801 MNIST
https://github.com/humphd/have-fun-with-machine-learning
http://blog.datumbox.com/datumbox-machine-learning-framework-version-0-8-0-released/
https://www.pyimagesearch.com/ OpenCV
https://arxiv.org/abs/1612.07828 Apple's 1st machine learning paper
https://github.com/ZuzooVn/machine-learning-for-software-engineers/blob/master/README.md
http://languagengine.co/blog/symbolic-machine-learning/
https://iamtrask.github.io/2016/08/17/grokking-deep-learning/
https://habrahabr.ru/company/parallels/blog/317994/
https://blog.dominodatalab.com/video-huge-debate-r-vs-python-data-science/
https://github.com/josephmisiti/awesome-machine-learning/blob/master/README.md
https://habrahabr.ru/company/yandex/blog/316232/
https://news.ycombinator.com/item?id=12924020
https://github.com/ZuzooVn/machine-learning-for-software-engineers
https://news.ycombinator.com/item?id=12898718
http://eli5.readthedocs.io/en/latest/ Python library which allows to visualize and debug various Machine Learning models
https://blog.acolyer.org/2016/11/21/artificial-intelligence-and-life-in-2030/
Yan Cibulkin
http://aiukraine.com/speaker/yan-tsy-bul-kin/
https://www.youtube.com/watch?v=HOgk-86bQss
Sergei Nikolenko
https://www.youtube.com/watch?v=akpiJiu3Quo
https://www.youtube.com/watch?v=GfvTzLbDsNg
http://logic.pdmi.ras.ru/~sergey/slides/N16_AIUkraineDLNLP.pdf
http://logic.pdmi.ras.ru/~sergey/teaching/mlkfu2014.html Nikolenko lectures
http://www.unofficialgoogledatascience.com/2016/10/practical-advice-for-analysis-of-large.html
http://www.dataschool.io/15-hours-of-expert-machine-learning-videos/
http://arogozhnikov.github.io/2016/04/28/demonstrations-for-ml-courses.html
https://github.com/nipunbatra/ProgramaticallyUnderstandingSeries
https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/
http://www.datasciencecentral.com/
http://www.datatau.com/ like hacker news
https://www.springboard.com/blog/data-mining-python-tutorial/
https://github.com/blue-yonder/tsfresh
https://github.com/rushter/MLAlgorithms
https://habrahabr.ru/company/wargaming/blog/270791/
https://www.youtube.com/channel/UCoFPJQg1Jesr021jLMody2w
Regularization
https://www.quora.com/What-is-the-difference-between-L1-and-L2-regularization
https://en.wikipedia.org/wiki/Predictive_analytics
https://en.wikipedia.org/wiki/Predictive_modelling
https://habrahabr.ru/post/313566/
t-SNE
https://news.ycombinator.com/item?id=12713388
https://habrahabr.ru/company/wunderfund/blog/326750/
https://en.wikipedia.org/wiki/Overfitting
https://www.youtube.com/watch?v=vNNcFTd_630&index=38&list=PL0Smm0jPm9WcCsYvbhPCdizqNKps69W4Z
https://www.reddit.com/r/learnmachinelearning/comments/5kbqh5/how_do_autoencoders_reduce_features/ Feature reduction
http://www.machinelearning.ru/wiki/
BOOKS
https://www.cs.cornell.edu/jeh/book2016June9.pdf
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://appliedpredictivemodeling.com/toc/ Applied predictive modelling
http://www-bcf.usc.edu/~gareth/ISL/ Intoduction To Statistical Lerning
https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ Cosma Shalizi book
http://www.qrg.northwestern.edu/BPS/readme.html Building Problem Solvers
https://manning.com/books/exploring-data-science
https://www.amazon.com/Making-Sense-Data-III-Visualizations/dp/0470536497
https://drive.google.com/file/d/0BxKBnD5y2M8NREZod0tVdW5FLTQ/view
http://blog.yhat.com/posts/python-random-forest.html RANDOM FOREST
https://jeremykun.com/2016/02/08/big-dimensions-and-what-you-can-do-about-it/
https://jeremykun.com/2016/04/18/singular-value-decomposition-part-1-perspectives-on-linear-algebra/
https://habrahabr.ru/company/npl/blog/311812/
https://habrahabr.ru/company/wunderfund/blog/311598/
https://mostafa-samir.github.io/ml-theory-pt1/
https://mostafa-samir.github.io/ml-theory-pt2/
https://mostafa-samir.github.io/ml-theory-pt3/
http://sebastianraschka.com/blog/2016/model-evaluation-selection-part1.html
http://sebastianraschka.com/blog/2016/model-evaluation-selection-part2.html
http://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html
https://sites.google.com/site/mikelubinsky/ml101
https://sites.google.com/site/mikelubinsky/ml-1
https://sites.google.com/site/mikelubinsky/ml/machinelearning
https://github.com/DistrictDataLabs/machine-learning
https://github.com/ianozsvald/data_science_delivered
https://github.com/savarin/pyconuk-introtutorial
http://www.kdnuggets.com/2016/09/great-algorithm-tutorial-roundup.html
https://indico.io/blog/simple-practical-path-to-machine-learning-capability-part3/
https://news.ycombinator.com/item?id=12557212
https://github.com/thundergolfer
https://news.ycombinator.com/item?id=12352587
https://medium.com/learning-new-stuff/machine-learning-in-a-year-cdb0b0ebd29c#.ougi3oxoc
CLASSES
https://see.stanford.edu/Course/CS229
http://www.dataschool.io/machine-learning-with-scikit-learn/
https://www.edx.org/xseries/data-science-engineering-apache-spark
https://www.reddit.com/r/MachineLearning/comments/51qhc8/phdlevel_courses/
https://sookocheff.com/post/datascience/datasciencespecialization/
All models are wrong, but some are useful — famed statistician George Box
machine-learning-cheat-sheet.pdf
http://heather.cs.ucdavis.edu/draftregclass.pdf
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/ BOOK
Deep Learning: Deep Learning (Udacity), Neural Networks for Machine Learning (Coursera)
Spark: Big Data Analysis with Spark (edX), Distributed Machine Learning with Spark (edX)
http://blog.yhat.com/posts/ML-resources-you-should-know.html
http://importknowledge.com/ daily news
https://sites.google.com/site/mikelubinsky/ml-1
http://blog.kaggle.com/2016/07/21/approaching-almost-any-machine-learning-problem-abhishek-thakur/
https://github.com/ben519/MLPB ML problems bundle
http://importknowledge.com/your-first-machine-learning-project-in-python-step-by-step/
https://arogozhnikov.github.io/2016/04/28/demonstrations-for-ml-courses.html
http://fastml.com/bayesian-machine-learning/
http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
Reinforcement Learning
https://webdocs.cs.ualberta.ca/~sutton/book/ Sutton reinforcement learning 2nd edition
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://github.com/yandexdataschool/Practical_RL/tree/master
http://www.wildml.com/2016/10/learning-reinforcement-learning/
https://arxiv.org/abs/1701.07274
http://cs.stanford.edu/people/karpathy/reinforcejs/
https://github.com/HFTrader/DeepLearningBook
https://github.com/datasciencemasters/go
https://github.com/open-source-society/data-science
https://www.amazon.com/Introducing-Data-Science-Machine-Learning/dp/1633430030
https://github.com/rasbt/python-machine-learning-book
https://github.com/amueller/introduction_to_ml_with_python
https://news.ycombinator.com/item?id=11985709
https://habrahabr.ru/company/retailrocket/blog/302828/
HMM
https://habrahabr.ru/company/surfingbird/blog/176461/
https://news.ycombinator.com/item?id=13750621
https://jeremykun.com/2015/04/06/markov-chain-monte-carlo-without-all-the-bullshit/
https://web.stanford.edu/~jurafsky/slp3/8.pdf
https://news.ycombinator.com/item?id=11908890
https://habrahabr.ru/post/241317/ Markov random field
https://openai.com/blog/generative-models/
https://blog.dominodatalab.com/an-introduction-to-model-based-machine-learning/