NANOPARTICLES: HEALTH EFFECTS AND WORKPLACE ASSESSMENTS AND CONTROLS
Due to their small size, nanoparticles can enter living organisms in previously unforeseen ways and their immense surface area results in higher reactivity compared to corresponding bulk materials. New toxicological testing methods, accurate measurement methods, reference materials and documentary standards are urgently needed to support risk assessments and regulatory policy decisions regarding materials containing nanoparticles.
Nanoparticles have exceptional physical, chemical and electrical properties. What about theirbiological properties and interactions with the human body? Do they present a health risk for the workers who produce, handle, transform or use them?
NIOSH
The National Institute of Occupational Safety and Health (NIOSH) has taken the lead in conducting research and partnering with other organizations involved in nanoparticle health and safety research. NIOSH is also dedicated to making this information available to the public. As a result, NIOSH has provided a Nanotechnology webpage that provides an in-depth review of the current information regarding nanoparticle toxicity and control. This page may be found at the following URL: http://www.cdc.gov/niosh/topics/nanotech/nano_exchange.html#engineered
"Until further information on the possible health risks and extent of occupational exposure to nanomaterials becomes available, interim precautionary measures should be developed and implemented." - NIOSH Nanotechnology: Approaches to Safe Nanotechnology
A review of practices within government, industry and academia has been explored to provide safety guidelines and work practices for the handling of nanoparticles until appropriate federal regulations are in place. A condensed summary of these general guidelines is provided below:
General Guidelines
General Guidelines
Pursue classic Industrial Hygiene (IH) practices for hazardous materials
Control use should include:
Engineering Controls
Emphasis should be on engineering control procedures to reduce airborne exposure to nanoparticles. These techniques should be similar to controls used to reduce general aerosol exposure. Provide source enclosure to isolate generation of nanoparticles where applicable. Maintain and test local exhaust ventilation systems as recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). Use high-efficiency particulate air (HEPA) filter media for exhaust ventilation systems. Note: Unventilated process enclosures may not be effective for controlling nanoparticle exposure due to the greater ability of nanoparticles to penetrate gaps.
Administrative Controls Communicate current known and unknown information to workers on a regular basis. Inform employees of risks and involve them in implementation of safety measures. Revise health and safety policies as appropriate for nanoparticle exposure. Implement access controls to restrict area to authorized personnel only. Employ health monitoring where appropriate.
Work Practices Use HEPA vacuum and wet wiping methods for cleaning work areas at end of each work shift. Separate consumption and storage of food or beverages from areas where nanomaterials are handled. Keep all Personal Protective Equipment (PPE) used for working with nanoparticles inside the lab in a designated area. Direct employees to wash hands prior to eating, smoking or leaving the worksite. Provide facilities for showering and/or changing to prevent transfer of nanoparticles to other areas.
Personal Protective Equipment Ensure respirators are correctly specified and fitted by UD Environmental Health and Safety. Use P-100 filter media. Ensure proper installation of HEPA filters and secure sealing of housing to prevent nanoparticles from escaping around housing. Wear Tyvek coveralls, latex or nitrile gloves, and eyeglass protection. Gloves should adequately cover full hand and wrist area.
Other Considerations
Maintenance
Care should be taken during maintenance of general ventilation, hoods, and other equipment used for nanoparticle research and development. Lab policy should include a statement regarding the use of proper PPE during routine maintenance of equipment.
Disposal
Concentrated nanomaterials should be disposed as hazardous waste.
Materials used in handling or cleaning nanomaterials should be disposed in a separate waste container and sealed. Examples include gloves, lab coats, shoe covers, towels, wipes, and containers which have residual amounts of nanomaterials. Labs should submit a waste collection request form and arrange pick up with EHS/RM.
Nanotechnology Health and Safety Resources
The following links provide more information regarding the latest nanoparticle toxicity research, environmental impact and occupational health and safety.
Specific Projects on Environmental and Health Implications National Institute for Occupational Safety and Health International Council on Nanotechnology and Rice University's Center for Biological and Environmental Nanotechnology database of scientific findings related to the benefits and risks of nanotechnology U.S. Environmental Protection Agency U.S. Food and Drug Administration NCI Nanotechnology Characterization Laboratory National Science Foundation.
Employees who use nanomaterials in research or production processes may be exposed to nanoparticles through inhalation, dermal contact, or ingestion, depending upon how employees use and handle them. Although the potential health effects of such exposure are not fully understood at this time, scientific studies indicate that at least some of these materials are biologically active, may readily penetrate intact human skin, and have produced toxicologic reactions in the lungs of exposed experimental animals.
Current research indicates that the toxicity of engineered nanoparticles will depend on the physical and chemical properties of the particle. Engineered nanomaterials may have unique chemical and physical properties that differ substantially from those of the same material in bulk or macro-scale form. Properties that may be important in understanding the toxic effects of nanomaterials include particle size and size distribution, agglomeration state, shape, crystal structure, chemical composition, surface area, surface chemistry, surface charge, and porosity.
The resources below contain information on the potential health effects of exposure to nanomaterials and workplace exposure control methods. As part of a government-wide coordination effort, OSHA is working with other federal agencies to address issues related to the impact of nanomaterials on human health and the environment.
Health Effects
Workplace Assessments and Controls
METROPOLITAN ENGINEERING, CONSULTING & FORENSICS (MECF)
Providing Competent, Expert and Objective Investigative Engineering and Consulting Services
P.O. Box 520
Tenafly, NJ 07670-0520
Tel.: (973) 897-8162
Fax: (973) 810-0440
E-mail: metroforensics@gmail.com
Web pages: https://sites.google.com/site/metropolitanforensics/
https://sites.google.com/site/metropolitanenvironmental/
https://sites.google.com/site/metroforensics3/
We are happy to announce the launch of our twitter account. Please make sure to follow us at @MetropForensics or @metroforensics1
Metropolitan appreciates your business.
Feel free to recommend our services to your friends and colleagues.
To unsubscribe from future technical blogs and announcements, please reply to this email with the word “unsubscribe” in the subject line.