Multiple discriminant analysis

The main idea...

Multiple discriminant analysis (MDA), also known as canonical variates analysis (CVA) or canonical discriminant analysis (CDA), constructs functions to maximally discriminate between n groups of objects. This is an extension of linear discriminant analysis (LDA) which - in its original form - is used to construct discriminant functions for objects assigned to two groups.

Following a significant MANOVA result, the MDA procedure attempts to construct discriminant functions (to be used as axes) from linear combinations of the original variables. Each axis is constructed in a manner that maximises the differences between groups while being uncorrelated (orthogonal) to other axes in multivariate space (Figure 1). Thus, the most 'powerful' discriminatory functions are followed by functions that account for whatever discriminatory potential is 'left over'. Together, the functions describe a hyperspace that best separates group in multivariate space. 

Figure 1: Schematic illustrating disciminant functions (DFs) generated by multiple discriminant analysis. Three groups are described by two DFs. DF1 discriminates well between group 1 and group 2, with weak discriminatory power for group 3. DF 2 discriminates well between group 3 (red) and groups 1 and 2 (yellow and blue, resp.). Only two variables are shown here, however, multiple variables are usually present. DFs are orthogonal in the multivariate space described by all variables in the analysis. Group centroids are indicated by points and dispersion by coloured circles.

Results and evaluation

The results and evaluation of an MDA procedure are very similar to those of an LDA. Please refer to the linear discriminant analysis page for details. Construction and evaluation of multiple discriminant functions is more likely and may require greater sampling effort (more objects) to achieve significance.

Key assumptions

Warnings

Implementations

References