Paper summaries 2016

Q. Qiu, E. M. Hill, S. Barbot, J. Hubbard, W. Feng, E. O. Lindsey, L. Feng, K. Dai, S. V. Samsonov, P. Tapponnier (2016). The mechanism of partial rupture of a locked megathrust: The role of fault morphology. Geology 44 (10), p. 875-878, https://doi.org/10.1130/G38178.1.

Abstract: Assessment of seismic hazard relies on estimates of how large an area of a tectonic fault could potentially rupture in a single earthquake. Vital information for these forecasts includes which areas of a fault are locked and how the fault is segmented. Much research has focused on exploring downdip limits to fault rupture from chemical and thermal boundaries, and along-strike barriers from subducted structural features, yet we regularly see only partial rupture of fully locked fault patches that could have ruptured as a whole in a larger earthquake. Here we draw insight into this conundrum from the 25 April 2015 Mw 7.8 Gorkha (Nepal) earthquake. We invert geodetic data with a structural model of the Main Himalayan thrust in the region of Kathmandu, Nepal, showing that this event was generated by rupture of a décollement bounded on all sides by more steeply dipping ramps. The morphological bounds explain why the event ruptured only a small piece of a large fully locked seismic gap. We then use dynamic earthquake cycle modeling on the same fault geometry to reveal that such events are predicted by the physics. Depending on the earthquake history and the details of rupture dynamics, however, great earthquakes that rupture the entire seismogenic zone are also possible. These insights from Nepal should be applicable to understanding bounds on earthquake size on megathrusts worldwide.

J. Hubbard, R. Almeida, A. Foster, S. Sapkota, P. Burgi, P. Tapponnier (2016). Structural segmentation controlled the 2015 Mw 7.8 Gorkha earthquake rupture in Nepal. Geology 44 (8), p. 639-642, https://doi.org/10.1130/G38077.1.

Abstract: The ongoing collision of India with Asia is partly accommodated by slip on the Main Himalayan Thrust (MHT). The 25 April 2015, Mw 7.8 Gorkha earthquake is the most recent major event to rupture the MHT, which dips gently northward beneath central Nepal. Although the geology of the range has been studied for decades, fundamental aspects of its deep structure remain disputed. Here, we develop a structural cross section and a three-dimensional, geologically informed model of the MHT that are consistent with seismic observations from the Gorkha earthquake. A comparison of our model to a detailed slip inversion data set shows that the slip patch closely matches an oval-shaped, gently dipping fault surface bounded on all sides by steeper ramps. The Gorkha earthquake rupture seems to have been limited by the geometry of that fault segment. This is a significant step forward in understanding the deep geometry of the MHT and its effect on earthquake nucleation and propagation. Published models of fault locking do not correlate with the slip patch or our fault model in the vicinity of the earthquake, further suggesting that fault geometry was the primary control on this event. Our result emphasizes the importance of adequately constraining subsurface fault geometry in megathrusts in order to better assess the sizes and locations of future earthquakes.

Three-dimensional seismic velocity structure in the Sichuan basin, China

M. Wang, J. Hubbard, A. Plesch, J. H. Shaw, L. Wang (2016). Three-dimensional seismic velocity structure in the Sichuan basin, China. Journal of Geophysical Research: Solid Earth 121, https://doi.org/10.1002/2015JB012644.

Abstract: We present a new three-dimensional velocity model of the crust in the eastern margin of the Tibetan Plateau. The model describes the velocity structure of the Sichuan basin and surrounding thrust belts. The model consists of 3-D surfaces representing major geologic unit contacts and faults and is parameterized with Vp velocity-depth functions calibrated using sonic logs. The model incorporates data from 1166 oil wells, industry isopach maps, geological maps, and a digital elevation model. The geological surfaces were modeled based on structure contour maps for various units from oil wells and seismic reflection profiles. These surfaces include base Quaternary, Mesozoic, Paleozoic, and Proterozoic horizons. The horizons locally exhibit major offsets that are compatible with the locations and displacements of important faults systems. This layered, upper crustal 3-D model extends down to 10–15 km depth and illustrates lateral and vertical variations of velocity that reflect the complex evolution of tectonics and sedimentation in the basin. The model also incorporates 3-D descriptions of Vs and density for sediments that are obtained from empirical relationships with Vp using direct measurements of these properties in borehole logs. To illustrate the impact of our basin model on earthquake hazards assessment, we use it to calculate ground motions and compare these with observations for the 2013 Lushan earthquake. The result demonstrates the effects of basin amplification in the western Sichuan basin. The Sichuan CVM model is intended to facilitate fault systems analysis, strong ground motion prediction, and earthquake hazards assessment for the densely populated Sichuan region.