Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Here is an example:
S = "rabbbit"
, T = "rabbit"
Return 3
.
遇到这种两个串的问题,很容易想到DP。但是这道题的递推关系不明显。可以先尝试做一个二维的表int[][] dp,用来记录匹配子序列的个数(以S="rabbbit"
,T = "rabbit"
为例):
r a b b b i t
r 1 1 1 1 1 1 1
a 0 1 1 1 1 1 1
b 0 0 1 2 3 3 3
b 0 0 0 1 3 3 3
i 0 0 0 0 0 3 3
t 0 0 0 0 0 0 3
从这个表可以看出,无论T的字符与S的字符是否匹配,dp[i][j] = dp[i][j - 1].就是说,假设S已经匹配了j - 1个字符,得到匹配个数为dp[i][j - 1].现在无论S[j]是不是和T[i]匹配,匹配的个数至少是dp[i][j - 1]。除此之外,当S[j]和T[i]相等时,我们可以让S[j]和T[i]匹配,然后让S[j - 1]和T[i - 1]去匹配。所以递推关系为:
dp[0][0] = 1; // T和S都是空串.
dp[0][1 ... S.length() - 1] = 1; // T是空串,S只有一种子序列匹配。
dp[1 ... T.length() - 1][0] = 0; // S是空串,T不是空串,S没有子序列匹配。
dp[i][j] = dp[i][j - 1] + (T[i - 1] == S[j - 1] ? dp[i - 1][j - 1] : 0).1 <= i <= T.length(), 1 <= j <= S.length()
public class Solution { public int numDistinct(String S, String T) { if(S.length() ==0 || T.length() ==0) return 0; int[][] dp = new int[S.length()][T.length()]; dp[0][0] = S.charAt(0) == T.charAt(0)?1:0; for(int i = 1; i < S.length(); i++){ dp[i][0] = S.charAt(i) == T.charAt(0) ?dp[i-1][0] +1 :dp[i-1][0]; } for(int i = 1; i< S.length();i++){ for(int j = 1; j<T.length();j++){ if(S.charAt(i) == T.charAt(j)){ dp[i][j] = dp[i-1][j] + dp[i-1][j-1]; } else{ dp[i][j] = dp[i-1][j]; } } } return dp[S.length()-1][T.length()-1]; } }
public class Solution { public int numDistinct(String S, String T) { // Start typing your Java solution below // DO NOT write main() function int s = S.length(); int t = T.length(); if(s == 0 || t == 0) return 0; int[][] dp = new int[s][t]; if(S.charAt(0) == T.charAt(0)) { dp[0][0]=1;} else { dp[0][0] = 0;} for(int i = 1; i < s; i++){ // why I need to init T[0]?? if(S.charAt(i) == T.charAt(0)) { dp[i][0] = dp[i-1][0] + 1;} else {dp[i][0] = dp[i-1][0];} } for(int i = 1 ; i < s ; i++){//i && j has to be grater than 1 otherwise i - i = 0 for(int j = 1 ; j < t && j<=i ; j++){ if(S.charAt(i) == T.charAt(j)){ dp[i][j] = dp[i-1][j] + dp[i-1][j-1];} else { dp[i][j] = dp[i-1][j];} } } return dp[s-1][t-1]; } }