mecanica de fluidos

Mecánica de fluidos, es la parte de la física que se ocupa de la acción de los fluidos en reposo o en movimiento, así como de las aplicaciones y mecanismos de ingeniería que utilizan fluidos. La mecánica de fluidos es fundamental en campos tan diversos como la aeronáutica, la ingeniería química, civil e industrial, la meteorología, las construcciones navales y la oceanografía.

La mecánica de fluidos puede subdividirse en dos campos principales: la estática de fluidos, o hidrostática, que se ocupa de los fluidos en reposo, y la dinámica de fluidos, que trata de los fluidos en movimiento. El término de hidrodinámica se aplica al flujo de líquidos o al flujo de los gases a baja velocidad, en el que puede considerarse que el gas es esencialmente incompresible. La aerodinámica, o dinámica de gases, se ocupa del comportamiento de los gases cuando los cambios de velocidad y presión son lo suficientemente grandes para que sea necesario incluir los efectos de la compresibilidad.

Entre las aplicaciones de la mecánica de fluidos están la propulsión a chorro, las turbinas, los compresores y las bombas. La hidráulica estudia la utilización en ingeniería de la presión del agua o del aceite.

PROPIEDADES DE LOS FLUIDOS

1.1 ANTECENDENTES HISTORICOS

La mecánica de fluidos podría aparecer solamente como un nombre nuevo para una ciencia antigua en origen y realizaciones, pero es más que eso, corresponde a un enfoque especial para estudiar el comportamiento de los líquidos y los gases.

Los principios básicos de l movimiento de los fluidos se desarrollaron lentamente a través de los siglos XVI al XIX como resultado del trabajo de muchos científicos como Da Vinci, Galileo, Torricelli, Pascal, Bernoulli, Euler, Navier, Stokes, Kelvin, Reynolds y otros que hicieron interesantes aportes teóricos a lo que se denomina hidrodinámica. También en el campo de hidráulica experimental hicieron importantes contribuciones Chezy, Ventura, Hagen, Manning, Pouseuille, Darcy, Froude y otros, fundamentalmente durante el siglo XIX.

Hacia finales del siglo XIX la hidrodinámica y la hidráulica experimental presentaban una cierta rivalidad. Por una parte, la hidrodinámica clásica aplicaba con rigurosidad principios matemáticos para modelar el comportamiento de los fluidos, para lo cual debía recurrir a simplificar las propiedades de estos. Así se hablaba de un fluido real. Esto hizo que los resultados no fueran siempre aplicables a casos reales. Por otra parte, la hidráulica experimental acumulaba antecedentes sobre el comportamiento de fluidos reales sin dar importancia a al formulación de una teoría rigurosa.

La Mecánica de Fluidos moderna aparece a principios del siglo XX como un esfuerzo para unir estas dos tendencias: experimental y científica. Generalmente se reconoce como fundador de la mecánica de fluidos modela al alemán L. Prandtl (1875-1953). Esta es una ciencia relativamente joven ala cual aun hoy se están haciendo importantes contribuciones.

La referencia que da el autor Vernard J.K acerca de los antecedentes de la mecánica de fluidos como un estudio científico datan según sus investigaciones de la antigua Grecia en el año 420 a.C. hechos por Tales de Mileto y Anaximenes; que después continuarían los romanos y se siguiera continuando el estudio hasta el siglo XVII.

1.2 CONCEPTOS BASICOS

1.2.1 DEFINICION DE FLUIDO

Para clasificar a los materiales que se encuentran en la naturaleza se pueden utilizar diversos criterios. Desde el punto de vista de la ingeniería, uno de los más interesantes lo constituye aquel que considera el comportamiento de los elementos frente a situaciones especiales. De acuerdo a ello se definen los estados básicos de sólido, plástico, fluidos y plasma. De aquí la de definición que nos interesa es la de fluidos, la cual se clasifica en líquidos y gases.

La clasificación de fluidos mencionada depende fundamentalmente del estado y no del material en si. De esta forma lo que define al fluido es su comportamiento y no su composición. Entre las propiedades que diferencian el estado de la materia, la que permite una mejor clasificaron sobre le punto de vista mecánico es la que dice la relación con la forma en que reacciona el material cuando se le aplica una fuerza.

Los fluidos reaccionan de una manera característica a las fuerzas. Si se compara lo que ocurre a un sólido y a un fluido cuando son sometidos a un esfuerzo de corte o tangencial se tienen reacciones características que se pueden verificar experimentalmente y que permiten diferenciarlos.

Con base al comportamiento que desarrollan los fluidos se definen de la siguiente manera: "Fluido es una sustancia que se deforma continuamente, o sea se escurre, cuando esta sometido a un esfuerzo de corte o tangencial". De esta definición se desprende que un fluido en reposo no soporta ningún esfuerzo de corte.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Fig. 1-Comportamiento de un fluido sometido a una fuerza de corte o tangencial.

1.2.2 SISTEMA DE UNIDADES

En ingeniería es necesario cuantificar los fenómenos que ocurren y para ello se requiere expresar las cantidades en unidades convencionales. Los sistemas de unidades utilizados están basados en ciertas dimensiones básicas, o primarias, apartar de las cuales es posible definir cualquier otra utilizando para ello leyes físicas, dimensionalmente homogéneas que las relacionan. Las dimensiones básicas más usadas son: longitud, tiempo, masa y temperatura. La forma en que se seleccionan las dimensiones básicas apartar de las se pueden definir las restantes, y las unidades que se les asignan, da origen a diferentes sistemas de unidades. Desde 1971 se ha intentado universalizar el uso del denominado Sistema Internacional de Unidades, SI el cual corresponde ala extensión y el mejoramiento del tradicional sistema MKS.

1.3 PROPIEDADES DE LOS FLUIDOS

Los fluidos, como todos los materiales, tienen propiedades físicas que permiten caracterizar y cuantificar su comportamiento así como distinguirlos de otros. Algunas de estas propiedades son exclusivas de los fluidos y otras son típicas de todas las sustancias. Características como la viscosidad, tensión superficial y presión de vapor solo se pueden definir en los líquidos y gasas. Sin embargo la masa específica, el peso específico y la densidad son atributos de cualquier materia.

1.3.1 Masa especifica, peso específico y densidad.

Se denomina masa específica a la cantidad de materia por unidad de volumen de una sustancia. Se designa por P y se define: P = lim ( m/ v)

v->0

El peso específico corresponde a la fuerza con que la tierra atrae a una unidad de volumen. Se designa por ß. La masa y el peso específico están relacionados por:

ß = gP

Donde g representa la intensidad del campo gravitacional.

Se denomina densidad a la relación que exista entre la masa específica de una sustancia cualquiera y una sustancia de referencia. Para los líquidos se utiliza la masa especifica del agua a 4°C como referencia, que corresponde a 1g/cm3 y para los gases se utiliza al aire con masa especifica a 20°C 1 1,013 bar de presión es 1,204 kg/m3.

1.3.2 Viscosidad.

La viscosidad es una propiedad distintiva de los fluidos. Esta ligada a la resistencia que opone un fluido a deformarse continuamente cuando se le somete a un esfuerzo de corte. Esta propiedad es utilizada para distinguir el comportamiento entre fluidos y sólidos. Además los fluidos pueden ser en general clasificados de acuerdo a la relación que exista entre el esfuerzo de corte aplicado y la velocidad de deformación.

Supóngase que se tiene un fluido entre dos placas paralelas separada a una distancia pequeña entre ellas, una de las cuales se mueve con respecto de la otra. Esto es lo que ocurre aproximadamente en un descanso lubricado. Para que la palca superior se mantenga en movimiento con respecto ala inferior, con una diferencia de velocidades V, es necesario aplicar una fuerza F, que por unidad se traduce en un esfuerzo de corte, ŋ = F / A, siendo A el área de la palca en contacto con el fluido. Se puede constatar además que el fluido en contacto con la placa inferior, que esta en reposo, se mantiene adherido a ella y por lo tanto no se mueve. Por otra parte, el fluido en contacto con la placa superior se mueve ala misma velocidad que ella. Si el espesor del fluido entre ambas placas es pequeño, se puede suponer que la variación de velocidades en su interior es lineal, de modo que se mantiene la proporción:

dv / dy = V/y

1.3.3 Compresibilidad.

La compresibilidad representa la relación entre los cambios de volumen y los cambios de presión a que esta sometido un fluido. Las variaciones de volumen pueden relacionarse directamente con variaciones de la masa específica si la cantidad de masa permanece constante. En general se sabe que en los fluidos la masa especifica depende tanto de la presión como de la temperatura de acuerdo a al ecuación de estado.

1.3.4 Presión de vapor.

Los fluidos en fase liquida o gaseosa dependiendo de las condiciones en que se encuentren. Las sustancias puras pueden pasar por las cuatro fases, desde sólido a plasma, según las condiciones de presión y temperatura a que estén sometidas. Se acostumbra designar líquidos a aquellos materias que bajo las condicione normales de presión y temperatura en que se encuentran en la naturaleza están en esa fase.

Cuando un liquido se le disminuye la presión a la que esta sometido hasta llegar a un nivel en el que comienza a bullir, se dice que alcanzado la presión de vapor. Esta presión depende de la temperatura. Así por ejemplo, para el agua a 100°C, la presión es de aproximadamente de 1 bar, que equivale a una atmósfera normal. La presión de vapor y la temperatura de ebullición están relacionadas y definen una línea que separa y el líquido de una misma sustancia en un grafico de presión y temperatura.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Fig. 04. Presión de vapor y temperatura de ebullición para el caso del agua.

1.3.5 Tensión superficial.

Se ha observado que entre la interfase de dos fluidos que no se mezclan se comportan como si fuera una membrana tensa. La tensión superficial es la fuerza que se requiere para mantener en equilibrio una longitud unitaria de esta película. El valor de ella dependerá de los fluidos en contacto y de la temperatura. Los efectos de la superficial solo apreciables en fenómenos de pequeñas dimensiones, como es el caso de tubos capilares, burbujas, gotas y situaciones similares.

Según Bonifacio Fernández L. Las propiedades de los fluidos se dividen en extensivas y mecánicas; de las cuales se derivan otras tomando en cuenta diversos factores.

1.3.6 Valores típicos de las propiedades de fluidos más usuales.

PRINCIPIO DE ARQUIMIDES

El principio de Arquímedes afirma que todo cuerpo sumergido en un fluido experimenta una fuerza hacia arriba igual al peso del volumen de fluido desplazado por dicho cuerpo. Esto explica por qué flota un barco muy cargado; el peso del agua desplazada por el barco equivale a la fuerza hacia arriba que mantiene el barco a flote.

El punto sobre el que puede considerarse que actúan todas las fuerzas que producen el efecto de flotación se llama centro de flotación, y corresponde al centro de gravedad del fluido desplazado. El centro de flotación de un cuerpo que flota está situado exactamente encima de su centro de gravedad. Cuanto mayor sea la distancia entre ambos, mayor es la estabilidad del cuerpo.

El principio de Arquímedes permite determinar la densidad de un objeto cuya forma es tan irregular que su volumen no puede medirse directamente. Si el objeto se pesa primero en el aire y luego en el agua, la diferencia de peso será igual al peso del volumen de agua desplazado, y este volumen es igual al volumen del objeto, si éste está totalmente sumergido. Así puede determinarse fácilmente la densidad del objeto (masa dividida por volumen) Si se requiere una precisión muy elevada, también hay que tener en cuenta el peso del aire desplazado para obtener el volumen y la densidad correctos.

Para el autor John Muller, Arquímedes fuel mas grande investigador de mecánica de fluidos de todos los tiempos; ya que el fue quien descubrió las propiedades de los fluidos sometidos a diversas circunstancias. Además el desarrollo como nadie mas, le mayor numero de postulados fundamentales acerca del tema.

ESTATICA DE FLUIDOS

2.1 INTRODUCCION

Según el investigador John Miller: "La estática de los fluidos estudia las condiciones de equilibrio bajo las cuales un fluido esta en reposo", sabiendo que para ello se requiere que todos los elementos que lo forman se muevan ala misma velocidad, es decir que no se desplacen los unos a los otros y por lo tanto no halla escurrimiento. El fluido esta entonces detenido o se mueve como si fuera un cuerpo rígido sin deformarse. La ausencia de escurrimiento, y por lo tanto de deformación angular, lleva implícita la ausencia de corte.

Bajo estas condiciones, sobre las superficies que están en contacto con el fluido solo se desarrollan esfuerzos normales. Debido a al ausencia de esfuerzos tangenciales la viscosidad no tiene importancia, de modo que los principios de la hidrostática son aplicable a cualquier tipo de fluido viscoso o real, ideal o perfecto.

2.2 ESTÁTICA DE FLUIDOS O HIDROSTÁTICA

Una característica fundamental de cualquier fluido en reposo es que la fuerza ejercida sobre cualquier partícula del fluido es la misma en todas direcciones. Si las fuerzas fueran desiguales, la partícula se desplazaría en la dirección de la fuerza resultante. De ello se deduce que la fuerza por unidad de superficie —la presión— que el fluido ejerce contra las paredes del recipiente que lo contiene, sea cual sea su forma, es perpendicular a la pared en cada punto. Si la presión no fuera perpendicular, la fuerza tendría una componente tangencial no equilibrada y el fluido se movería a lo largo de la pared.

Este concepto fue formulado por primera vez en una forma un poco más amplia por el matemático y filósofo francés Blaise Pascal en 1647, y se conoce como principio de Pascal. Dicho principio, que tiene aplicaciones muy importantes en hidráulica, afirma que la presión aplicada sobre un fluido contenido en un recipiente se transmite por igual en todas direcciones y a todas las partes del recipiente, siempre que se puedan despreciar las diferencias de presión debidas al peso del fluido y a la profundidad.Cuando la gravedad es la única fuerza que actúa sobre un líquido contenido en un recipiente abierto, la presión en cualquier punto del líquido es directamente proporcional al peso de la columna vertical de dicho líquido situada sobre ese punto. La presión es a su vez proporcional a la profundidad del punto con respecto a la superficie, y es independiente del tamaño o forma del recipiente. Así, la presión en el fondo de una tubería vertical llena de agua de 1 cm. de diámetro y 15 m de altura es la misma que en el fondo de un lago de 15 m de profundidad. De igual forma, si una tubería de 30 m de longitud se llena de agua y se inclina de modo que la parte superior esté sólo a 15 m en vertical por encima del fondo, el agua ejercerá la misma presión sobre el fondo que en los casos anteriores, aunque la distancia a lo largo de la tubería sea mucho mayor que la altura de la tubería vertical. Veamos otro ejemplo: la masa de una columna de agua dulce de 30 cm. de altura y una sección transversal de 6,5 cm.2 es de 195 g, y la fuerza ejercida en el fondo será el peso correspondiente a esa masa. Una columna de la misma altura pero con un diámetro 12 veces superior tendrá un volumen 144 veces mayor, y pesará 144 veces más, pero la presión, que es la fuerza por unidad de superficie, seguirá siendo la misma, puesto que la superficie también será 144 veces mayor. La presión en el fondo de una columna de mercurio de la misma altura será 13,6 veces superior, ya que el mercurio tiene una densidad 13,6 veces superior a la del agua.

El segundo principio importante de la estática de fluidos fue descubierto por el matemático y filósofo griego Arquímedes. El principio de Arquímedes afirma que todo cuerpo sumergido en un fluido experimenta una fuerza hacia arriba igual al peso del volumen de fluido desplazado por dicho cuerpo. Esto explica por qué flota un barco muy cargado; el peso del agua desplazada por el barco equivale a la fuerza hacia arriba que mantiene el barco a flote.

El punto sobre el que puede considerarse que actúan todas las fuerzas que producen el efecto de flotación se llama centro de flotación, y corresponde al centro de gravedad del fluido desplazado. El centro de flotación de un cuerpo que flota está situado exactamente encima de su centro de gravedad. Cuanto mayor sea la distancia entre ambos, mayor es la estabilidad del cuerpo.

El principio de Arquímedes permite determinar la densidad de un objeto cuya forma es tan irregular que su volumen no puede medirse directamente. Si el objeto se pesa primero en el aire y luego en el agua, la diferencia de peso será igual al peso del volumen de agua desplazado, y este volumen es igual al volumen del objeto, si éste está totalmente sumergido. Así puede determinarse fácilmente la densidad del objeto (masa dividida por volumen) Si se requiere una precisión muy elevada, también hay que tener en cuenta el peso del aire desplazado para obtener el volumen y la densidad correctos.

CONCLUSIONES.

El autor John Muller deduce que: la estática de fluidos postula dos principios fundamentales mediante los cuales describe las características de los fluidos sometidos a diversos fenómenos como la presión atmosférica o la sumersión en líquido y los efectos colaterales que se producen al realizarlos.

CONCLUSION PERSONAL.

En el segundo capitulo se identifico ya un fenómeno propio de la mecánica de fluidos como es la estática o hidrostática de fluidos en la cual intervienen una presión atmosférica o ya sea bien un liquido.

En los dos casos se va dar un fenómeno de movimiento el cual se denomina movimiento dinámico o hidrostático. También se mencionaron los precursores de estas investigaciones donde figuran nombres como el de Arquímedes y Blaise Pascal principalmente.

DINAMICA DE FLUIDOS

3.1 INTRODUCCION

Para el autor Gareth Williams la dinámica de fluidos se centra principalmente a determinar la fricción que ofrece el mismo dependiendo del grado de viscosidad del mismo. Los fluidos ideales cuya viscosidad es nula o despreciable, en su comportamiento no se observa esfuerzos de corte y por lo tanto no existen fuerzas de fricción con las paredes de los sólidos.

En este capitulo se mencionaran las obras de Euler y Torricelli , quienes fueron los que contribuyeron al desarrollo de la dinámica de fluidos moderna.

3.2 DINÁMICA DE FLUIDOS O HIDRODINÁMICA

Esta rama de la mecánica de fluidos se ocupa de las leyes de los fluidos en movimiento; estas leyes son enormemente complejas, y aunque la hidrodinámica tiene una importancia práctica mayor que la hidrostática, sólo podemos tratar aquí algunos conceptos básicos.

El interés por la dinámica de fluidos se remonta a las aplicaciones más antiguas de los fluidos en ingeniería. Arquímedes realizó una de las primeras contribuciones con la invención, que se le atribuye tradicionalmente, del tornillo sin fin. La acción impulsora del tornillo de Arquímedes es similar a la de la pieza semejante a un sacacorchos que tienen las picadoras de carne manuales. Los romanos desarrollaron otras máquinas y mecanismos hidráulicos; no sólo empleaban el tornillo de Arquímedes para bombear agua en agricultura y minería, sino que también construyeron extensos sistemas de acueductos, algunos de los cuales todavía funcionan. En el siglo I a.C., el arquitecto e ingeniero romano Vitrubio inventó la rueda hidráulica horizontal, con lo que revolucionó la técnica de moler grano.

A pesar de estas tempranas aplicaciones de la dinámica de fluidos, apenas se comprendía la teoría básica, por lo que su desarrollo se vio frenado. Después de Arquímedes pasaron más de 1.800 años antes de que se produjera el siguiente avance científico significativo, debido al matemático y físico italiano Evangelista Torricelli, que inventó el barómetro en 1643 y formuló el teorema de Torricelli, que relaciona la velocidad de salida de un líquido a través de un orificio de un recipiente, con la altura del líquido situado por encima de dicho agujero. El siguiente gran avance en el desarrollo de la mecánica de fluidos tuvo que esperar a la formulación de las leyes del movimiento por el matemático y físico inglés Isaac Newton. Estas leyes fueron aplicadas por primera vez a los fluidos por el matemático suizo Leonhard Euler, quien dedujo las ecuaciones básicas para un fluido sin rozamiento (no viscoso).

Euler fue el primero en reconocer que las leyes dinámicas para los fluidos sólo pueden expresarse de forma relativamente sencilla si se supone que el fluido es incompresible e ideal, es decir, si se pueden despreciar los efectos del rozamiento y la viscosidad. Sin embargo, como esto nunca es así en el caso de los fluidos reales en movimiento, para Gareth Williams los resultados de dicho análisis sólo pueden servir como estimación para flujos en los que los efectos de la viscosidad son pequeños.

3.2.1 Flujos incompresibles y sin rozamiento

Estos flujos cumplen el llamado teorema de Bernoulli, enunciado por el matemático y científico suizo Daniel Bernoulli. El teorema afirma que la energía mecánica total de un flujo incompresible y no viscoso (sin rozamiento) es constante a lo largo de una línea de corriente. Las líneas de corriente son líneas de flujo imaginarias que siempre son paralelas a la dirección del flujo en cada punto, y en el caso de flujo uniforme coinciden con la trayectoria de las partículas individuales de fluido. El teorema de Bernoulli implica una relación entre los efectos de la presión, la velocidad y la gravedad, e indica que la velocidad aumenta cuando la presión disminuye. Para el autor John Muller: "Este principio es importante para la medida de flujos, y también puede emplearse para predecir la fuerza de sustentación de un ala en vuelo.

http://www.youtube.com/watch?v=Ym4ve--kuLw