EXCITING

EXploring geological resourCes and reservoir Integrity by geophysical prospecTING of clay properties from nano to field scale

EXCITING is funded by a grant from the French National Research Agency (ANR) from 2018 to 2022 (680k€) 

A full energetic transition from traditional hydrocarbon resources to carbon free energy needs smart and safe underground use. In addition to being a source of geothermal energy, the subsurface is a vast 3D space that can be used in a carefully planned way for the management of carbon-free energies through the geological storage of CO2 and various other forms of energy vectors (e.g., H2, heat, compressed air).  For a safe and efficient exploitation of all natural resources (e.g., geothermal energy, hydrocarbon, minerals) or underground storage, one critical effort is to identify, characterize, and monitor natural clayey cap rock overlying a target (resource reservoir or storage volume), which plays an essential role in risk reduction (e.g., water table contamination, substances upward leakage) due to their low permeability. Characterization of clayey rocks is thus a key issue in this context. Focusing on this geological formation allows reducing a great part of geotechnologies issues. 

The main objective of the project is to improve the characterization of the complex and frequency dependence of electrical properties of different clays minerals and mixtures. For that purpose, we intend to closely combine measurements, modeling and inversion tools at different scales (from nano to pluri-m) in parallel to instrumental development. This work will require the development of upscaling procedures, from the mineral/water interface (nano/micrometric) to the field scale (decametric to kilometric). Laboratory experiments using Spectral Induced Polarization (SIP) and multi-scale simulations will be conducted in order to validate the upscaling relationships developed theoretically. These models will be included in an existing inversion code in order to characterize the complex electrical conductivity (chargeability) more precisely after inversion. In parallel, we aim at improving the reliability of EM imaging at depth based on Controlled Source EM (CSEM) by resolving the surface heterogeneities “static” effects which often deteriorates the imaging capabilities deeper. We will develop a new prototype of EM Induction device (EMI) in order to image densely over large zone the shallow earth (from deca to hectometers). This project will help to push further the use of geophysical methods for the characterization of clayey cap rocks. 

Started in February 2018, the EXCITING project will run until July 2022.

Peer-reviewed publications from the project :