Mars Archived News

CosMos Astronomy - Southern Hemisphere

New NASA Mission to Take First Look Deep Inside Mars

NASA has selected a new mission, set to launch in 2016, that will take the first look into the deep interior of Mars to see why the Red Planet evolved so differently from Earth as one of our solar system's rocky planets. The new mission, named InSight, will place instruments on the Martian surface to investigate whether the core of Mars is solid or liquid like Earth's, and why Mars' crust is not divided into tectonic plates that drift like Earth's. Detailed knowledge of the interior of Mars in comparison to Earth will help scientists understand better how terrestrial planets form and evolve.

Camera Duo on Mars Rover Mast Will Shoot Color Views

Two digital color cameras riding high on the mast of NASA's next Mars rover will complement each other in showing the surface of Mars in exquisite detail.

They are the left and right eyes of the Mast Camera, or Mastcam, instrument on the Curiosity rover of NASA's Mars Science Laboratory mission, launching in late 2011. The right-eye Mastcam looks through a telephoto lens, revealing details near or far with about three-fold better resolution than any previous landscape-viewing camera on the surface of Mars. The left-eye Mastcam provides broader context through a medium-angle lens. Each can acquire thousands of full-color images and store them in an eight-gigabyte flash memory. Both cameras are also capable of recording high-definition video at about eight frames per second. Combining information from the two eyes can yield 3-D views of the telephoto part of the scene.

Color View from Orbit Shows Mars Rover Beside Crater

NASA's Mars Exploration Rover Opportunity has nearly completed its three-month examination of a crater informally named "Santa Maria," but before the rover resumes its overland trek, an orbiting camera has provided a color image of Opportunity beside Santa Maria.

The High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter acquired the image on March 1, while Opportunity was extending its robotic arm to take close-up photos of a rock called "Ruiz Garcia." From orbit, the tracks Opportunity made as it approached the crater from the west are clearly visible. Santa Maria crater is about 90 meters (295 feet) in diameter.

The HiRISE image is at http://photojournal.jpl.nasa.gov/catalog/PIA13803. March 1 corresponded to the 2,524th Martian day, or sol, of Opportunity's work on Mars. A raw image from Opportunity's front hazard-avoidance camera from the same day, showing the arm extended to Ruiz Garcia, is at http://marsrovers.jpl.nasa.gov/gallery/all/1/f/2524/1F352255948EFFB1F5P1110L0M1.HTML . To complete the scale of imaging, a raw image taken by Opportunity's microscopic imager that day, showing textural detail of the rock, is at http://marsrovers.jpl.nasa.gov/gallery/all/1/m/2524/1M352254519EFFB1F5P2935M2M1.HTML

Some of Mars' Missing Carbon Dioxide May be Buried

Rocks on Mars dug from far underground by crater-blasting impacts are providing glimpses of one possible way Mars' atmosphere has become much less dense than it used to be. At several places where cratering has exposed material from depths of about 5 kilometers (3 miles) or more beneath the surface, observations by a mineral-mapping instrument on NASA's Mars Reconnaissance Orbiter indicate carbonate minerals.

These are not the first detections of carbonates on Mars. However, compared to earlier findings, they bear closer resemblance to what some scientists have theorized for decades about the whereabouts of Mars' "missing" carbon. If deeply buried carbonate layers are found to be widespread, they would help answer questions about the disappearance of most of ancient Mars' atmosphere, which is deduced to have been thick and mostly carbon dioxide. The carbon that goes into formation of carbonate minerals can come from atmospheric carbon dioxide.

Advanced NASA Instrument Gets Close-up on Mars Rocks

NASA's Mars Science Laboratory rover, Curiosity, will carry a next generation, onboard "chemical element reader" to measure the chemical ingredients in Martian rocks and soil. The instrument is one of 10 that will help the rover in its upcoming mission to determine the past and present habitability of a specific area on the Red Planet. Launch is scheduled between Nov. 25 and Dec. 18, 2011, with landing in August 2012.

The Alpha Particle X-Ray Spectrometer (APXS) instrument, designed by physics professor Ralf Gellert of the University of Guelph in Ontario, Canada, uses the power of alpha particles, or helium nuclei, and X-rays to bombard a target, causing the target to give off its own characteristic alpha particles and X-ray radiation. This radiation is "read by" an X-ray detector inside the sensor head, which reveals which elements and how much of each are in the rock or soil.

Northern Mars Landscape Actively Changing

Sand dunes in a vast area of northern Mars long thought to be frozen in time are changing with both sudden and gradual motions, according to research using images from a NASA orbiter.

These dune fields cover an area the size of Texas in a band around the planet at the edge of Mars' north polar cap. The new findings suggest they are among the most active landscapes on Mars. However, few changes in these dark-toned dunes had been detected before a campaign of repeated imaging by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter, which reached Mars five years ago next month.

Sandtrapped Rover Makes A Big Discovery

"The rover's spinning wheels have broken through a crust, and we've found something supremely interesting in the disturbed soil," says Ray Arvidson of the Washington University in St. Louis.

Spirit, like its twin rover Opportunity, has roamed the Red Planet for nearly 6 years. During that time, the rover has had some close calls and come out fighting from each. In fact, it's been driving backwards since one of its wheels jammed in 2006.

NASA and Microsoft Allow Earthlings to Become Martians

NASA and Microsoft Corp. of Redmond, Wash., have collaborated to create a Web site where Internet users can have fun while advancing their knowledge of Mars. Drawing on observations from NASA’s Mars missions, the "Be a Martian" Web site will enable the public to participate as citizen scientists to improve Martian maps, take part in research tasks, and assist Mars science teams studying data about the Red Planet. Join here.

Frost-Covered Phoenix Lander Seen in Winter Images

Winter images of NASA's Phoenix Lander showing the lander shrouded in dry-ice frost on Mars have been captured with the High Resolution Imaging Science Experiment, or HiRISE camera, aboard NASA's Mars Reconnaissance Orbiter. The HiRISE camera team at the University of Arizona, Tucson, captured one image of the Phoenix lander on July 30, 2009, and the other on Aug. 22, 2009. That's when the sun began peeking over the horizon of the northern polar plains during winter, the imaging team said. The first day of spring in the northern hemisphere began Oct. 26.

NASA Spacecraft Sees Ice on Mars Exposed by Meteor Impacts

NASA's Mars Reconnaissance Orbiter has revealed frozen water hiding just below the surface of mid-latitude Mars. The spacecraft's observations were obtained from orbit after meteorites excavated fresh craters on the Red Planet.