F. how the sky works

This table of surprises will likely involve dropped-objects landing directly below drop-point and planetary-motion on the background of stars, geocentrism and Ptolemaic epicycles, Brahe and Galileo's observations & heliocentric simplifications, Kepler and Newton's insights about orbital mechanics; plus more recent planetary-mission and extra-solar planet data along with laboratory observation of: lunar/cometary sample returns, stratosphere-collected interplanetary dust, and pre-solar stardust from meteorites.

One might also include in these surprises the extra-galactic observation of red-shifts, the 3K background, fluctuations possibly linked to inflation, effects of apparently-unseen mass, accelerated expansion, etc. These observations for the most part impact energy and length scales which, like details of the turtle on whose back the universe rests, are somewhat removed from the datastreams that we need to process in everyday life. Hence utility with data has historically taken a backseat to aesthetic factors in its impact on the model-consensus in these areas[22], making it all the more important in science classes to cover observations first.

What else? 

Related references: