Founder of the World Platonist's Academy of Sciences and Arts (1973), founder of the World System of academies and universities Contenant.
Founder of the World Ptolemy University.
Founder of the World Intellectual Elite Union, World Blue(intellectual)-Violet(cosmic infinite) Movement (1994), Legal and Intellectual Elite Trade Union and World Justice Movement (2000).
Author of fundamental works in Number Theory, Theoretical Physics and Neo-Platonism (see pages of this site).
More precise remark: ALBERT AFLITUN'S NUMBER THEORY FOURTH PROBLEM is connected with L. R. Aflitun Ptolmis's conjecture: "EVERY EVEN NUMBER CAN BE REPRESENTED AS A DIFFERENCE OF TWO CONSECUTIVE PRIMES, AND NOT BY ONE WAY" (1799), - and with De Polignac's conjecture: "EVERY EVEN NUMBER IS THE DIFFERENCE OF TWO CONSECUTIVE PRIMES IN INFINITELY MANY WAYS (1849) (all problems are unsolved).
ONE CAN FORMULATE NEW CONJECTURES ON FUNCTIONS β(k) and δ(k).
Nicolas Bert
(see an article on site: proza.ru: Aflitunov Albert. Kak stat' bogom matematiki? (Russian) How May Be A Math God?).
Remark: Every positive integer m(j,k) can be represented as a half-difference of two consecutive primes in infinitely many ways (the first formulation by L.R. D'Al-Aflitoune Lagos Ptolmis von Habsburg de Bourbon in 1799).
CALCULATIONS FOR ABC-CONJECTURE
1) A + B = C :
C = 3^8 = 6561 ; logC = 8,78890 ;
B = 5^4 = 625 ; logB = 6,43935;
A = 5936 = 2^4 ∙ 7 ∙ 53 ;
logA = 8,68879 ;
rad(ABC) = 2*3*5* 7 * 53 = 11130 ;
log(rad(ABC)) = 9,31740 < logA = 8,68879 < logC = 8,78890 ;
logC/log(rad(ABC)) = 0,94328 .
2) A + B = C :
C = 3^16 = 43046721 ; logC = 17,57780 ;
B = 5^8 = 390625 ; logB = 12,87550 ;
A = 42656096 = 2^5 ∙ 7 ∙ 53 ∙ 3593 ;
logA = 17,56868 ;
rad(ABC) = 2*3*5* 7 * 53 * 3593 = 39990090 ;
log(rad(ABC)) = 17,50414 < logA = 17,56868 < logC = 17,57780 ;
logC/log(rad(ABC)) = 1,00421 .
3) A + B = C :
C = 3^32 = 1853020188851841 ; logC = 35,15559 ;
B = 5^16 = 152587890625 ; logB = 25,75101 ;
A = 1852867600961216 = 2^6*28951056265019 = 2^6 ∙ 7 ∙ 17 ∙ 53 ∙ 3593 ∙ 1277569 ;
logA = 35,15551;
rad(ABC) = 2*3*5*7 * 17 * 53 * 3593 * 1277569 = 868531687950570 ;
log(rad(ABC)) = 34,39782 < logA = 35,15551 < logC = 35,15559 ;
logC/log(rad(ABC)) = 1,02203 (a local maximum with m=5, n=4 for an equation:
3^(2^m) = 5^(2^n)+A ) .
4) A + B = C :
C = 3^64 = 3433683820292512484657849089281 ; logC = 70,311186475 ;
B = 5^32 = 23283064365386962890625 ; logB = 51,50201 ;
A = 3433683797009448119270886198656 =
= 2 ^7 ∙ 7 ∙ 17 ∙ 53 ∙ 673 ∙ 3593 ∙ 970561 ∙ 1277569 ∙ 1418561 ;
logA = 70,311186468;
rad(ABC) = 2 ∙ 3 ∙ 5 ∙ 7 ∙ 17 ∙ 53 ∙ 673 ∙ 3593 ∙ 970561 ∙ 1277569 ∙ 1418561 =
= 804769639924089402954113952810 ;
log(rad(ABC)) = 68,86035 < logA = 70,311186468 < logC = 70,311186475 ;
logC/log(rad(ABC)) = 1,02107 .
5) A + B = C :
C = 3^128 = 1,1790184577738583171520872861413e+61 ;
logC = 140,622372949518040498 ;
B = 5^64 = 5,4210108624275221700372640043497e+44 ; logB = 103,004026395782 ;
A = 1,1790184577738582629419786618661e+61 =
= 2 ^8 ∙ 7 ∙ 17 ∙ 53 ∙ 673 ∙ 3593 ∙ 970561 ∙ 1277569 ∙ 1418561 ∙ ∙ ∙ ;
logA = 140,622372949518040452 ;
rad(ABC) = 2 ∙ 3 ∙ 5 ∙ 7 ∙ 17 ∙ 53 ∙ 673 ∙ 3593 ∙ 970561 ∙ 1277569 ∙ 1418561 ∙ ∙ ∙ =
= 1,3816622552037401518851312443743e+60;
log(rad(ABC)) = 138,47839288670 < logA = 140,622372949518040452 <
< logC = 140,622372949518040498 ;
logC/log(rad(ABC)) = 1,01548 .
6) A + B = C :
C = 11^8 = 214358881 ;
logC = 19,18316 ;
B = 7^8 = 5764801 ; logB = 15,56728 ;
A = 208594080 =25 · 32 · 5 · 17 · 8521 ;
logA = 19,15590 ;
rad(ABC) = 2 ∙ 3 ∙ 5 ∙ 7 ∙ 11 ∙ 17 ∙ 8521 = 334619670 ;
log(rad(ABC)) = 19,62851 > logC = 19,18316 ;
logC/log(rad(ABC)) = 0,97731 .
7) A + B = C :
C = 2^8 = 256 ;
logC = 5,54518 ;
B = 3^4 = 81 ; logB = 4,39445 ;
A = 175 = 5 ^2 ∙ 7 ;
logA = 5,16478 ;
rad(ABC) = 2 ∙ 3 ∙ 5 ∙ 7 = 210 ;
log(rad(ABC)) = 5,34711 < logC = 5,54518 ;
logC/log(rad(ABC)) = 1,03704 .
8) A + B = C :
C = 5^16 = 152587890625 ;
logC = 25,75101;
B = 7^8 = 5764801 ; logB = 15,56728;
A = 152582125824 = 2 ^8 ∙ 3^2 ∙ 41 · 337 · 4793 ;
logA = 25,75097;
rad(ABC) = 2 ∙ 3 ∙ 5 ∙ 7 ∙ 41 · 337 · 4793 = 13907225010 ;
log(rad(ABC)) = 23,35567 < logA = 25,75097 < logC = 25,75101;
logC/log(rad(ABC)) = 1,10256 .
9) A + B = C :
C = 5^8 = 390625 ;
logC = 12,87550;
B = 7^4 = 2401 ; logB = 7,78364 ;
A = 388224 = 2 ^8 ∙ 3^2 · 337 ;
logA = 12,86934;
rad(ABC) = 2 ∙ 3 ∙ 5 ∙ 7 ∙ 337 = 70770 ;
log(rad(ABC)) = 11,16719 < logA = 12,86934 < logC = 12,87550;
logC/log(rad(ABC)) = 1,15298 .
10) A + B = C :
C = 5^4 = 625 ;
logC = 6,43775 ;
B = 7^2 = 49 ; logB = 3,8918 ;
A = 576 = 2 ^6 ∙ 3^3 ;
logA = 6,35611 ;
rad(ABC) = 2 ∙ 3 ∙ 5 ∙ 7 = 210 ;
log(rad(ABC)) = 5,34711 < logA = 6,35611 < logC = 6,43775 ;
logC/log(rad(ABC)) = 1,20397 .
11) A + B = C :
C = 2^20 *3^20 = 3656158440062976 ; logC = 35,83519 ;
B = 5^22 = 2384185791015625 ; logB = 35,40763 ;
A = 1271972649047351 = 19 · 29 · 31 · 19759 · 3768769 ;
logA = 34,77934 ;
rad(ABC) = 2 · 3 · 5 · 19 · 29 · 31 · 19759 · 3768769 =
= 38159179471420530 ;
log(rad(ABC)) = 38,18054 > logC = 35,83519 ;
logC/log(rad(ABC)) = 0,93857 .
12) A + B = C :
C = 2^21 *3^19 = 2437438960041984 ; logC = 35,42972 ;
B = 5^22 = 2384185791015625 ; logB = 35,40763 ;
A = 53253169026359 = 47 · 1133046149497 ;
logA = 31,60608 ;
rad(ABC) = 2 · 3 · 5 · 47 · 1133046149497 = 1597595070790770 ;
log(rad(ABC)) = 35,00728 < logC = 35,42972 ;
logC/log(rad(ABC)) = 1,01207 .
13) A + B = C :
3^4*19^4=5^4*11^4+2^6*7*3137 ;
C=3^4*19^4= 10556001; logC=16,172205;
B=5^4*11^4= 9150625 ; logB=16,029333;
A= 1405376 =2^6*7*3137; logA=14,155815;
rad(ABC)=2*3*5*7*11*19*3137=137682930;
log(rad(ABC))= 18,740464; logC/log(rad(ABC))= 0,862956 .
14) A + B = C :
3^8*19^8=5^8*11^8+2^7*7*3137*9853313 ;
C=3^8*19^8= 111429157112001; logC= 32,344410;
B=5^8*11^8= 83733937890625; logB= 32,058665;
A= 27695219221376 =2^7*7*3137*9853313; logA=30,952281;
rad(ABC)=2*3*5*7*11*19*3137*9853313=1356633004047090;
log(rad(ABC))= 34,843782; logC/log(rad(ABC))=0,928269 .
15) A + B = C :
3^8=7^4+2^6*5*13 ;
C=3^8= 6561; logC= 8,788898;
B=7^4= 2401 ; logB= 7,783640;
A= 4160 =2^6*5*13; logA= 8,333270;
rad(ABC)=2*3*5*7*13=2730;
log(rad(ABC))=7,912057; logC/log(rad(ABC))= 1,110823 .
16) A + B = C :
3^2*5^2=2^5*7+1;
C=3^2*5^2= 225; logC= 5,416100;
B=2^5*7= 224 ; logB= 5,411646;
A= 1; logA= 0;
rad(ABC)=2*3*5*7=210;
log(rad(ABC))= 5,347108; logC/log(rad(ABC))= 1,012903 .
17) A + B = C :
2^16=3^10+13*499;
C=2^16 = 65536;
rad(ABC)=2*3*13*499=38922;
logC/log(rad(ABC))= 1,049297 .
18) A + B = C :
2^32=3^20+5 ∙ 13 ∙ 499 ∙ 24917 ;
C=2^32 = 4294967296 ;
rad(ABC)=2*3*5*13*499*24917= 4849097370 ;
logC/log(rad(ABC))= 0,994559 .
19) A + B = C :
2^34=5*3^19+5281 ∙ 2152729 ;
C=2^34 = 17179869184 ; logC=34log2=22,180710 ;
rad(ABC)=2*3*5*5281*2152729 = 341056855470 ;
log(rad(ABC))=26,555315 ;
logC/log(rad(ABC))=0,835264 .
20) A + B = C :
5*3^20=2^34+11*23095711 ;
C=5*3^20 = 17433922005 ; logC=23,581684 ;
rad(ABC)=2*3*5*11*23095711=7621584630;
log(rad(ABC))= 22,754250;
logC/log(rad(ABC))=1,036364.
21) A + B = C :
21.1) 3^2= 2^3+1 ;
C=3^2=9 ;
rad(ABC)=2*3=6 ;
logC/log(rad(ABC))=1.226294 ;
21.2) 3^4= 2^4*5+1 ;
C=3^4=81 ;
rad(ABC)=2*3*5=30 ;
logC/log(rad(ABC))=1.292030 (a local maximum of logC/log(rad(ABC)));
21.3) 3^8= 2^5*5*41+1 ;
C=3^8=6561 ;
rad(ABC)=2*3*5*41 ;
logC/log(rad(ABC))=1.235303 ;
21.4) 3^16= 2^6*5*23*41*9127+1 ;
C=3^16 ;
rad(ABC)=2*3*5*23*41*9127 ;
logC/log(rad(ABC))=0.907510 .
22) С=В+А :
7^4= 2^5*5^2*3+1 ;
C=7^4 = 2401;
rad(ABC)=2*3*5*7 = 210;
logC/log(rad(ABC))= 1.455673 .
FIBONACCI NUMBERS AND THE MASS SPECTRUM OF ELEMENTARY PARTICLES
1. Elementary Particles Masses Spectrum (1988).
2. New Nonlinear Mechanics(1990).
3. Diophantine Equations(1980).
4. One (Unity) (1996).
5. Pythagoras(1998).
6. Theory of Knowledge(1995).
7. Holy Dreams(2005).
8. God's Law(2003).
9. Quatrains(2005).
10. Poetry, vol.1-42 (1976-2006).
11. Human Rights and UN Reorganization(1988).
12. World Future and History Rhythms(1992).
13. Ta-Meri (Myth) (2006).
14. Non-linear Model of Quantum Field Theory (1993).
15. Towards New Principles of International Law (2000).
16. Philosophy of Law (2001).
17. Neo-Platonist's Notes, vol. 1-22 (1982-2006).
18. Divine Orion Initiation in Ancient Egypt (2005).
19. Truth and Law (2006).
20. New World Philosophy (2006).
21. New Problems of Number Theory (2006).
22. New Quatrains (2007).
23. The World Documents for WIEU
(www.sites.google.com/site/tdoalbertaflitunov;www.sites.google.com/site/wieucontenantwpu; www.aflitunov.webs.com; www.albertaflitunov.webs.com; aflitunov.blog.ru; www.aflitunov.fo.ru; www.sites.google.com/site/legalelitetradeunion).
24. New World Order Declaration (2008).
25. New Classic and Quantum Mechanics: Hidden Variables Models (2009).
26. Mathematical Foundations of Elementary Particle Theories and Astrophysics (2011).
27. Ethnology Reader. Vol. I, II, III (2011).
28. Notes on International Law and National Constitutions (2012).
29. Hafiz Shirazi’s Ghazals Translation (2012 -…).
30. SELECTED POETRY (2007-2011): www.stihi.ru (in Cyrillic: Aflitunov Albert).
31. ADRIAN-…-SHEMI. Verses Novel. In Russian, 2012 (Roman v stikhakh): www.stihi.ru
(Aflitunov Albert).
32. New Prosaic Works. In Russian, 2012-2013: www.proza.ru
33. Finance&Eco Reader. (2013).
34. Ancient Egyptian Thoth’s Emerald Tables (compound and translation) (2013-…).
35. Collected Works in 10 vol. (with Sir Shemi Cont.)- London-Geneva-Istanbul-Moscow, Shemi, 2013-
REFERENCES
https://sites.google.com/site/tdoalbertaflitunov/
https://sites.google.com/site/aflitunovptolemyalbert/
https://sites.google.com/site/albertaflitun/
https://sites.google.com/site/wieucontenantwpu/
https://sites.google.com /site/worldptolemyuniversity/
https://sites.google.com/site/theopenworlduniversity/
http://albertaflitunov.webs.com/
http://albertaflitun2015.fo.ru/
http://albregit.wix.com/aflitunov/
http://albert-aflitun-ptolemy.fo.ru/
https://sites.google.com/site/legalelitetradeunion/
https://sites.google.com/site/elitetradeunion/
http://tradeunionoflegal.fo.ru/
aflitunov.blog.ru
albert-aflitunov.blog.ru
aflitunov.livejournal.com
twitter: AlAflitunov
ru-ru.facebook.com/people/Albert-Aflitoune/
proza.ru, stihi.ru(in Russian: автор: Афлитунов Альберт)
COLLECTED WORKS
СОБРАНИЕ СОЧИНЕНИЙ