El efecto mariposa es un concepto de la teoría del caos. La idea es que, dadas unas circunstancias peculiares del tiempo y condiciones iniciales de un determinado sistema dinámico caótico (más concretamente con dependencia sensitiva a las condiciones iniciales) cualquier pequeña discrepancia entre dos situaciones con una variación pequeña en los datos iniciales, cabe resaltar que sin duda alguna y sin explicación científica, acabará dando lugar a situaciones donde ambos sistemas evolucionan en ciertos aspectos de forma completamente diferente. Eso implica que si en un sistema se produce una pequeña perturbación inicial, mediante un proceso de amplificación, podrá generar un efecto considerablemente grande a corto o medio plazo.
En el ejemplo particular propuesto por Edward Norton Lorenz, por el efecto mariposa, si se parte de dos mundos o situaciones globales casi idénticos, pero en uno de ellos hay una mariposa aleteando y en el otro no, a largo plazo, el mundo con la mariposa y el mundo sin la mariposa acabarán siendo muy diferentes. En uno de ellos puede producirse a gran distancia un tornado y en el otro no suceder en absoluto.
La relación entre el aleteo de una mariposa con acontecimientos remotos puede ya verse sugerida en un antiguo proverbio chino que dice: «el leve aleteo de las alas de una mariposa se puede sentir al otro lado del mundo». Este proverbio aludiría a una visión holística, en la que todos los acontecimientos estarían relacionados y repercutirían los unos en los otros, pero sin implicar necesariamente una repercusión de enorme magnitud a partir de acontecimientos ínfimos.
En tiempos modernos la específica formulación del concepto como Efecto Mariposa está íntimamente ligado al surgimiento de la teoría del caos, que ya sí efectivamente sugiere la posibilidad de que un ínfimo acontecimiento como el aleteo de una mariposa, acaecido en un momento dado, pueda alterar a largo plazo una secuencia de acontecimientos de inmensa magnitud, (al menos para variar el lugar y momento de su aparición, no tanto para aportar la energía para causarlos, que obviamente no posee). Su formulación se la debemos al matemático y meteorólogo estadounidense Edward Norton Lorenz (1917-2008) para explicar el comportamiento caótico de sistemas inestables, tales como el tiempo meteorológico, expuesto en su artículo de 1963: “Flujo determinista no periódico”. Lorenz comunicó este concepto a una audiencia general, en forma de pregunta, no de afirmación, durante una conferencia en la reunión anual de 1972 de la American Association for the Advancement of Science (AAAS), en el MIT, con el título: Predictability; Does the Flap of a Butterfly's wings in Brazil Set Off a Tornado in Texas?, (Predictibilidad, ¿El aleteo de una mariposa en Brasil hace aparecer un tornado en Texas?). Por falta de modelos meteorológicos que pudieran apoyar esa posibilidad, Lorenz tuvo cuidado en advertir que no estaba sugiriendo que la respuesta a su pregunta fuera necesariamente positiva, «Lest I appear frivolous in even posing the title question, let alone suggesting that it might have an affirmative answer ...»(Para que no parezca frívolo ni siquiera al plantear la pregunta del título, y mucho menos sugerir que podría tener una respuesta afirmativa ...)
Anteriormente, Lorenz había usado el ejemplo de una gaviota provocando una tormenta pero finalmente lo hizo más poético con la mariposa, siguiendo las recomendaciones de unos colegas.
Lorenz trabajaba en 1960 en la predicción del tiempo meteorológico con la ayuda de ordenadores y, al repetir unos cálculos introduciendo valores anteriormente obtenidos, observó cambios drásticos en los resultados del tiempo meteorológico previsto a largo plazo tras efectuar un levísimo redondeo, (la impresora, para ahorrar espacio recogía sólo tres cifras decimales del valor de una determinada magnitud, [0,506], que él introdujo como valor inicial para continuar los cálculos, [considerando que el error era insignificante], en lugar de introducir el valor más preciso almacenado en la memoria del ordenador, [0,506127]). Esta es su propia descripción:
En un momento dado, decidí repetir algunos de los cálculos con el fin de examinar con mayor detalle lo que estaba ocurriendo. Detuve el ordenador, tecleé una línea de números que había salido por la impresora un rato antes y lo puse en marcha otra vez. Me fui al vestíbulo a tomarme una taza de café y regresé al cabo de una hora, tiempo durante el cual el ordenador había simulado unos dos meses de tiempo meteorológico. Los números que salían por la impresora no tenían nada que ver con los anteriores.
Inmediatamente pensé que se había estropeado alguna válvula o que el ordenador tenía alguna otra avería, cosa nada infrecuente, pero antes de llamar a los técnicos decidí comprobar dónde se encontraba la dificultad, sabiendo que de esa forma podría acelerar la reparación. En lugar de una interrupción brusca, me encontré con que los nuevos valores repetían los anteriores en un principio, pero que enseguida empezaban a diferir, en una, en varias unidades, en la última cifra decimal, luego en la anterior y luego en la anterior. La verdad es que las diferencias se duplicaban en tamaño más o menos constantemente cada cuatro días, hasta que cualquier parecido con las cifras originales desaparecía en algún momento del segundo mes.
Con eso me bastó para comprender lo que ocurría: los números que yo había tecleado no eran los números originales exactos sino los valores redondeados que había dado a la impresora en un principio. Los errores redondeados iniciales eran los culpables: se iban amplificando constantemente hasta dominar la solución. Dicho con terminología de hoy: se trataba del caos.
Edward Lorenz en La esencia del Caos
En 1987 el término “efecto mariposa” despegó gracias al bestseller “Caos: la creación de una ciencia”, de James Gleick. Entonces fue cuando el descubrimiento de Lorenz llegó al público general, con una gran repercusión y popularidad.
James Gleick resumió lo sucedido de este modo:
«En una determinada ocasión quiso volver a echar un vistazo a una simulación que ya había hecho, llevándola más lejos en el tiempo. En vez de comenzar desde el principio y esperar a que el ordenador llegara al intervalo que le interesaba, introdujo en el teclado los valores que ya tenía apuntados en el papel. Dejó la máquina trabajando y se fue a tomar un café. Después de una hora, la máquina había simulado dos meses de predicción atmosférica, y sucedió lo inesperado: Existían valores de los días que había simulado anteriormente que no coincidían con los que había calculado esta vez... De repente comprendió la verdad... El ordenador almacenaba seis decimales: 0,506127. En la impresión, para ahorrar espacio, aparecían únicamente tres: 0,506... Lorenz había introducido la expresión más corta, redondeada, convencido de que la diferencia - una milésima parte - era de poca importancia. En el sistema de ecuaciones de Lorenz, los errores ínfimos tenían efectos catastróficos»
James Gleick en Caos: la creación de una ciencia
Esta interrelación de causa-efecto se da en todos los eventos de la vida. Un pequeño cambio puede generar grandes resultados o, hipotéticamente, «el aleteo de una mariposa en Hong Kong puede desatar una tempestad en Nueva York».
La consecuencia práctica del efecto mariposa es que en sistemas complejos tales como el estado del tiempo o la bolsa de valores es muy difícil predecir con seguridad en un mediano rango de tiempo. Los modelos finitos que tratan de simular estos sistemas necesariamente descartan información acerca del sistema y los eventos asociados a él. Estos errores son magnificados en cada unidad de tiempo simulada hasta que el error resultante llega a exceder el cien por ciento.
Diagrama del atractor extraño que posee el modelo de Lorenz para el tiempo atmosférico, para los valores r = 28, σ = 10, b = 8/3. Si bien este "atractor" del modelo tiene forma de mariposa, el nombre del concepto no tiene en sí mismo nada que ver con la forma del atractor.
En el proceso de creación de un modelo de simulación es frecuente encontrar que los elementos del sistema se comportan de manera sorprendente e incluso totalmente inesperada. También puede ocurrir que los cambios que efectuamos en las condiciones iniciales produzcan efectos contrarios o muy distintos a los previstos, y aún más, que pequeños cambios en los valores iniciales generen grandes diferencias en el comportamiento de los elementos del sistema.
Quizás sin saberlo hemos creado un modelo de simulación con una estructura y una forma de relación entre variables tal que, bajo determinadas condiciones, presenta una forma de comportamiento que se conoce como caos. Una definición del caos establece que es "un comportamiento aperiódico en un sistema determinista que muestra gran sensibilidad respecto a las condiciones iniciales".
No es necesario que el modelo de simulación tenga un aspecto extremadamente complejo, con muchas variables, parámetros y retroalimentaciones. Los numerosos estudios realizados respecto al tema establecen que con tres ecuaciones diferenciales y una no-linealidad en alguna de ellas tenemos las condiciones necesarias para que el sistema presente bajo ciertas condiciones un comportamiento caótico.
En las últimas décadas del siglo XX la Teoría del Caos ha despertado considerable interés, ya que muestra la realidad interconectada que nos rodea y llena de bucles de retroalimentación, donde cada elemento integrante actúa para modificar el comportamiento del medio que la rodea, pero no lo hace en forma independiente sino obedeciendo a un comportamiento integrado del conjunto. Esta teoría es particularmente útil para abordar el estudio de los fenómenos sociales, siempre complejos y difíciles de resolver en términos de relaciones lineales causa-efecto.
Afortunadamente hay ejemplos de fenómenos físicos o de sistemas puramente matemáticos que facilitan la comprensión de los comportamientos caóticos antes de pasar a situaciones mucho más difíciles de modelar, como son los fenómenos sociales. Entre ellos, el péndulo forzado como fenómeno físico o una ecuación diferencial de tercer orden como modelo matemático. Tenemos otro ejemplo aún más conocido por sus repercusiones cinematográficas, originado en el trabajo del meteorólogo Edward Lorenz, quien hace más de cuarenta años construyó un sistema de tres ecuaciones diferenciales con el objeto de modelar de manera sencilla el comportamiento meteorológico, con el cual logró una respuesta tan sorprendente como llamativa y que se conoce popularmente como el "Efecto mariposa".
En la década de 1960 el meteorólogo Edward Lorenz inició una serie de investigaciones orientadas a resolver el problema de la predicción meteorológica. Trabajando sobre una atmósfera bidimensional rectangular, cuya zona inferior está a una temperatura mayor que la zona superior, y partiendo de las ecuaciones de continuidad, cantidad de movimiento y balance térmico, desarrolló un sistema simplificado formado por tres ecuaciones diferenciales.
Es importante observar que se trata de tres ecuaciones diferenciales que presentan dos no linealidades. Por ello este sistema reúne las condiciones para que aparezcan comportamientos caóticos en sus variables de estado (las "variables de estado" se denominan Niveles en Dinámica de Sistemas).
Podemos representar estas ecuaciones con un modelo de simulación dinámica. No obstante es necesario tener en cuenta que las ecuaciones precedentes resultan de un proceso usual en el análisis de fenómenos físicos y químicos, consistente en la adimensionalización de las variables. Consecuencia de este proceso es la aparición de agrupaciones de parámetros (por ejemplo densidad, viscosidad, longitudes características) conocidas como números adimensionales, que en definitiva establecen relaciones entre las fuerzas impulsoras del cambio en el sistema en estudio, o sea de su dinámica.
El modelo creado está formado de tres Niveles, denominados Flujo Convectivo, Diferencia de Temperatura Horizontal y Diferencia de Temperatura Vertical, que dependen de sus respectivos Flujos, que son: Variación del flujo convectivo, Variación de temperatura horizontal y Variación de temperatura vertical. Por otra parte, existen tres parámetros adimensionales: el Número de Prandtl, que establece una relación entre la viscosidad y la conductividad térmica del fluido, el Número de Rayleigh, que cuantifica la transmisión de calor en una capa de fluido con producción interna de calor por radiación, y la Altura, que representa el espesor de la capa en estudio.
En esencia, el modelo establece la relación entre el flujo convectivo y las variaciones de temperatura en la masa de aire, la cual es de por sí compleja dado que una diferencia de temperatura produce un flujo convectivo, pero a su vez este flujo modifica la diferencia de temperatura, todo ello condicionado a las propiedades del medio estudiado, tales como viscosidad, densidad, o conductividad térmica, las cuales se encuentran agrupadas en los números adimensionales que aparecen como parámetros del modelo.
Podemos construir un gráfico XY que nos compare la evolución conjunta de dos variables, por ejemplo el gráfico del Flujo Convectivo (en el eje X) en relación a la Diferencia de Temperatura Vertical (en el eje Y). Para hacerlo acudimos al menú de la barra superior: Windows - Control Panel - New y seleccionamos las variables tal y como se indica en la siguiente figura:
En rigor, lo que estamos haciendo es graficando el espacio de fases. El espacio de fases es el espacio matemático formado por las variables que describen un sistema dinámico. Cada punto del espacio de fases representa un posible estado del sistema. La evolución en el tiempo del sistema se representa con una trayectoria en el espacio de fases.
El estudio del espacio de fases reviste un interés especial. Los sistemas disipativos presentan regiones del espacio de fases hacia la cual convergen las trayectorias que parten de una determinada región, llamada "cuenca del atractor". Hay atractores predecibles, de estructura simple, como el punto o el ciclo límite. Pero hay otros atractores, conocidos como atractores extraños, en los cuales pequeñas diferencias en las posiciones iniciales conducen a posiciones que divergen totalmente. Este es precisamente el caso del atractor de Lorenz, con su curiosa forma similar a una mariposa.
Es probable que las evoluciones temporales de las variables, en general complejas, no permitan sacar conclusiones rápidas ni efectuar predicciones válidas, pero el análisis del espacio de fases si nos permite ver hacia donde converge el estado del sistema, y entre que valores máximos y mínimos de sus variables evoluciona. Todo esto constituye una información de gran valor cuando se aborda el estudio de las complejas situaciones que caracterizan al mundo en que vivimos.
Edward Lorenz descubrió este inesperado comportamiento en 1963, cuando efectuaba las primeras simulaciones con el modelo que estaba estudiando. Sin proponérselo, había desarrollado un valioso ejemplo práctico de comportamiento caótico, que venía a afirmar lo que ya se había planteado en forma teórica muchos años antes. En 1890 Henri Pointcaré publicó un artículo describiendo el hecho de que el sistema sol-tierra-luna no puede ser explicado bajo la mecánica tradicional. En sus palabras: "sucede que pequeñas diferencias en las condiciones iniciales impactan grandemente en el fenómeno final. Un pequeño cambio al principio provoca enormes errores al final. La predicción se vuelve imposible". Posteriores estudios acerca del tema han permitido desarrollar numerosos ejemplos de sistemas físicos, químicos, biológicos y matemáticos que presentan este fenómeno de impredecibilidad, el cual ha sido llamado "caos determinista".
Hallamos un buen ejemplo en el libro de Julien Sprott titulado "Chaos and Time-Series análisis" en el cual propone entre otros un sencillo modelo con tres variables. La visión sistémica y las poderosas herramientas de cálculo existentes permiten analizar muy rápidamente los problemas de comportamiento caótico, con la ventaja de disponer de una clara imagen visual de la estructura del sistema y sus interrelaciones. Asimismo, es inmediata la construcción de los espacios de fases y la búsqueda de atractores, lo cual no debe ser visto como un mero ejercicio matemático.