Module Summary:
Special relativity is a key foundation of modern physics, particularly in the contexts of particle physics and astrophysics where E = mc2 and relativistic speeds are crucial concepts. In this module, the fundamental principles of special relativity will be explained, emphasising the energy-momentum four-vector and its applications to particle collisions and decays. Applications to nuclear physics include nuclear mass & binding energy, radioactive decay, and nuclear reactions. We will also cover the structure of the nucleus (liquid drop and shell model) and, building on first year quantum physics, the concept of isospin, ending with an introduction to the quark model.
Module leader: Prof Vitaly Kudryavtsev
Assessment: Coursework 20% and Exam 80%.