I am interested in how the brain processes information about its sensory environment. The auditory system can process sound information with amazing precision. For example, auditory neurons can detect the tiny microsecond differences in arrival time of a sound between the two ears, a property that is related to a sound's location. The processing of acoustic cues is critical for all animals in a wide range of behaviors including predator-prey interactions and social communication. An elegant and elaborate neural circuitry has evolved in species across the animal kingdom to process this information.
My research centers on the question of how cellular, synaptic, and systems level properties are integrated to allow sensory neurons to extract and represent features of the acoustic environment. The vertebrate auditory system is composed of a rich network of brain regions that process sound signals over interconnected neural pathways. In general, each brain center is devoted to the computation of specific properties of sounds and these properties are encoded by virtue of the synaptic connections and intrinsic properties of neurons in the network. Find out more about our current projects here.