Artificial neural networks: A tutorial
Zhang, G, et al.
Interest in using artificial neural networks (ANNs) for forecasting has led to a tremendous surge in research activities in the past decade. While ANNs provide a great deal of promise, they also embody much uncertainty. Researchers to date are still not certain about the effect of key factors on forecasting performance of ANNs. This paper presents a state-of-the-art survey of ANN applications in forecasting. Our purpose is to provide (1) a synthesis of published research in this area, (2) insights on ANN modeling issues, and (3) the future research directions.
G Zhang, et al.
Interest in using artificial neural networks (ANNs) for forecasting has led to a tremendous surge in research activities in the past decade. While ANNs provide a great deal of promise, they also embody much uncertainty. Researchers to date are still not certain about the effect of key factors on forecasting performance of ANNs. This paper presents a state-of-the-art survey of ANN applications in forecasting. Our purpose is to provide (1) a synthesis of published research in this area, (2) insights on ANN modeling issues, and (3) the future research directions.
Evolutionary and Spatial Games "Letters to Nature"
M. A. Nowak, et al.
MUCH attention has been given to the Prisoners' Dilemma as a metaphor for the problems surrounding the evolution of coopera-tive behaviour1–6. This work has dealt with the relative merits of various strategies (such as tit-for-tat) when players who recognize each other meet repeatedly, and more recently with ensembles of strategies and with the effects of occasional errors. Here we neglect all strategical niceties or memories of past encounters, considering only two simple kinds of players: those who always cooperate and those who always defect. We explore the consequences of placing these players in a two-dimensional spatial array: in each round, every individual 'plays the game' with the immediate neighbours; after this, each site is occupied either by its original owner or by one of the neighbours, depending on who scores the highest total in that round; and so to the next round of the game. This simple, and purely deterministic, spatial version of the Prisoners' Dilemma, with no memories among players and no strategical elaboration, can generate chaotically changing spatial patterns, in which cooperators and defectors both persist indefinitely (in fluctuating proportions about predictable long-term averages). If the starting configurations are sufficiently symmetrical, these ever-changing sequences of spatial patterns—dynamic fractals—can be extraordinarily beautiful, and have interesting mathematical properties. There are potential implications for the dynamics of a wide variety of spatially extended systems in physics and biology.
The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture
Simon A. Levin
This meeting is hosted by the Integrated Training in Microbial Systems (ITiMS) program at the University of Michigan and is sponsored by the Burroughs Wellcome Fund.