Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. We identified a common pathogenic gene expression signature—an immune–fibrotic axis—indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an “inflammatory” SSc gene expression signature. Our results suggest that the innate immune system is central to SSc disease processes but that subtle distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and tissue-specific disease processes in complex human diseases.
Kirschner, et al.
Tuberculosis (TB) is an ancient and deadly disease characterized by complex host-pathogen dynamics playing out over multiple time and length scales and physiological compartments. Mathematical and computational modeling can be used to integrate various types of experimental data and suggest new hypotheses, mechanisms, and therapeutic approaches to TB. Here, we offer a first-time comprehensive review of work on within-host TB models that describe the immune response to infection, including the formation of lung granulomas. The models include systems of ordinary and partial differential equations and agent-based models as well as hybrid and multi-scale models that are combinations of these. Many aspects of Mycobacterium tuberculosis infection, including host dynamics in the lung (typical site of infection for TB), granuloma formation, roles of cytokine and chemokine dynamics, and bacterial nutrient availability have been explored. Finally, we survey applications of these within-host models to TB therapy and prevention and suggest future directions to impact this global disease.
A synthetic oscillatory network of transcriptional regulators
M. B. Elowitz, et al.
Networks of interacting biomolecules carry out many essential functions in living cells, but the `design principles' underlying the functioning of such intracellular networks remain poorly understood, despite intensive efforts including quantitative analysis of relatively simple systems. Here we present a complementary approach to this problem: the design and construction of a synthetic network to implement a particular function. We used three transcriptional repressor systems that are not part of any natural biological clock ±5 to build an oscillating network, termed the repressilator, in Escherichia coli. The network periodically induces the synthesis of green fluorescent protein as a readout of its state in individual cells. The resulting oscillations, with typical periods of hours, are slower than the cell-division cycle, so the state of the oscillator has to be transmitted from generation to generation. This artificial clock displays noisy behaviour, possibly because of stochastic fluctuations of its components. Such `rational network design' may lead both to the engineering of new cellular behaviours and to an improved understanding of naturally occurring networks.
The increasing number of genome-wide assays of gene expression available from public databases presents opportunities for computational methods that facilitate hypothesis generation and biological interpretation of these data. We present an unsupervised machine learning approach, ADAGE (analysis using denoising autoencoders of gene expression), and apply it to the publicly available gene expression data compendium for Pseudomonas aeruginosa. In this approach, the machine-learned ADAGE model contained 50 nodes which we predicted would correspond to gene expression patterns across the gene expression compendium. While no biological knowledge was used during model construction, cooperonic genes had similar weights across nodes, and genes with similar weights across nodes were significantly more likely to share KEGG pathways. By analyzing newly generated and previously published microarray and transcriptome sequencing data, the ADAGE model identified differences between strains, modeled the cellular response to low oxygen, and predicted the involvement of biological processes based on low-level gene expression differences. ADAGE compared favorably with traditional principal component analysis and independent component analysis approaches in its ability to extract validated patterns, and based on our analyses, we propose that these approaches differ in the types of patterns they preferentially identify. We provide the ADAGE model with analysis of all publicly available P. aeruginosa GeneChip experiments and open source code for use with other species and settings. Extraction of consistent patterns across large-scale collections of genomic data using methods like ADAGE provides the opportunity to identify general principles and biologically important patterns in microbial biology. This approach will be particularly useful in less-well-studied microbial species. IMPORTANCE The quantity and breadth of genome-scale data sets that examine RNA expression in diverse bacterial and eukaryotic species are increasing more rapidly than for curated knowledge. Our ADAGE method integrates such data without requiring gene function, gene pathway, or experiment labeling, making practical its application to any large gene expression compendium. We built a Pseudomonas aeruginosa ADAGE model from a diverse set of publicly available experiments without any prespecified biological knowledge, and this model was accurate and predictive. We provide ADAGE results for the complete P. aeruginosa GeneChip compendium for use by researchers studying P. aeruginosa and source code that facilitates ADAGE's application to other species and data types. Author Video: An author video summary of this article is available.
Bayesian Hierarchical Mixture Modeling to Assign Copy Number From a Targeted CNV Array
Cardin N, et al.
Accurate assignment of copy number at known copy number variant (CNV) loci is important for both increasing understanding of the structural evolution of genomes as well as for carrying out association studies of copy number with disease. As with calling SNP genotypes, the task can be framed as a clustering problem but for a number of reasons assigning copy number is much more challenging. CNV-assays have lower signal to noise ratios than SNP assays, often display heavy tailed and asymmetric intensity distributions, contain outlying observations and may exhibit systematic technical differences among different cohorts. In addition, the number of copy-number classes at a CNV in the population may be unknown a priori. Due to these complications automatic and robust assignment of copy number from array data remains a challenging problem. We have developed a copy number assignment algorithm, CNVCALL, for a targeted CNV array, such as that used by the Wellcome Trust Case Control Consortium’s recent CNV association study. We use a Bayesian hierarchical mixture model that robustly identifies both the number of different copy number classes at a specific locus as well as relative copy number for each individual in the sample. This approach is fully automated which is a critical requirement when analysing large numbers of CNVs. We illustrate the methods performance using real data from the WTCCC’s CNV association study and using simulated data.
Cryptococcus neoformans Identifies a Novel Molecular Scaffold That Inhibits Cell Wall Integrity Pathway Signaling
K Hartland, et al.
Cryptococcus neoformans is one of the most important human fungal pathogens; however, no new therapies have been developed in over 50 years. Fungicidal activity is crucially important for an effective anticryptococal agent and, therefore, we screened 361,675 molecules against C. neoformans using an adenylate kinase release assay that specifically detects fungicidal activity. A set of secondary assays narrowed the set of hits to molecules that interfere with fungal cell wall integrity and identified three benzothioureas with low in vitro mammalian toxicity and good in vitro anticryptococcal (minimum inhibitory concentration = 4 μg/mL). This scaffold inhibits signaling through the cell wall integrity MAP kinase cascade. Structure–activity studies indicate that the thiocarbonyl moiety is crucial for activity. Genetic and biochemical data suggest that benzothioureas inhibit signaling upstream of the kinase cascade. Thus, the benzothioureas appear to be a promising new scaffold for further exploration in the search for new anticryptococcal agents.
D.M. Strauss-Albee, et al.
Innate natural killer (NK) cells are diverse at the single-cell level because of variegated expressions of activating and inhibitory receptors, yet the developmental roots and functional consequences of this diversity remain unknown. Because NK cells are critical for antiviral and antitumor responses, a better understanding of their diversity could lead to an improved ability to harness them therapeutically. We found that NK diversity is lower at birth than in adults. During an antiviral response to either HIV-1 or West Nile virus, NK diversity increases, resulting in terminal differentiation and cytokine production at the cost of cell division and degranulation. In African women matched for HIV-1 exposure risk, high NK diversity is associated with increased risk of HIV-1 acquisition. Existing diversity may therefore decrease the flexibility of the antiviral response. Collectively, the data reveal that human NK diversity is a previously undefined metric of immune history and function that may be clinically useful in forecasting the outcomes of infection and malignancy.
Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone
S Louca, et al.
Microorganisms are the most abundant lifeform on Earth, mediating global fluxes of matter and energy. Over the past decade, high-throughput molecular techniques generating multiomic sequence information (DNA, mRNA, and protein) have transformed our perception of this microcosmos, conceptually linking microorganisms at the individual, population, and community levels to a wide range of ecosystem functions and services. Here, we develop a biogeochemical model that describes metabolic coupling along the redox gradient in Saanich Inlet—a seasonally anoxic fjord with biogeochemistry analogous to oxygen minimum zones (OMZs). The model reproduces measured biogeochemical process rates as well as DNA, mRNA, and protein concentration profiles across the redox gradient. Simulations make predictions about the role of ubiquitous OMZ microorganisms in mediating carbon, nitrogen, and sulfur cycling. For example, nitrite “leakage” during incomplete sulfide-driven denitrification by SUP05 Gammaproteobacteria is predicted to support inorganic carbon fixation and intense nitrogen loss via anaerobic ammonium oxidation. This coupling creates a metabolic niche for nitrous oxide reduction that completes denitrification by currently unidentified community members. These results quantitatively improve previous conceptual models describing microbial metabolic networks in OMZs. Beyond OMZ-specific predictions, model results indicate that geochemical fluxes are robust indicators of microbial community structure and reciprocally, that gene abundances and geochemical conditions largely determine gene expression patterns. The integration of real observational data, including geochemical profiles and process rate measurements as well as metagenomic, metatranscriptomic and metaproteomic sequence data, into a biogeochemical model, as shown here, enables holistic insight into the microbial metabolic network driving nutrient and energy flow at ecosystem scales.
M Fallahi-Sichani
Multiple immune factors control host responses to Mycobacterium tuberculosis infection, including the formation of granulomas, which are aggregates of immune cells whose function may reflect success or failure of the host to contain infection. One such factor is TNF-α. TNF-α has been experimentally characterized to have the following activities in M. tuberculosis infection: macrophage activation, apoptosis, and chemokine and cytokine production. Availability of TNF-α within a granuloma has been proposed to play a critical role in immunity to M. tuberculosis. However, in vivo measurement of a TNF α concentration gradient and activities within a granuloma are not experimentally feasible. Further, processes that control TNF-α concentration and activities in a granuloma remain unknown. We developed a multiscale computational model that includes molecular, cellular, and tissue scale events that occur during granuloma formation and maintenance in lung. We use our model to identify processes that regulate TNF-α concentration and cellular behaviors and thus influence the outcome of infection within a granuloma. Our model predicts that TNF-αR1 internalization kinetics play a critical role in infection control within a granuloma, controlling whether there is clearance of bacteria, excessive inflammation, containment of bacteria within a stable granuloma, or uncontrolled growth of bacteria. Our results suggest that there is an interplay between TNF-α and bacterial levels in a granuloma that is controlled by the combined effects of both molecular and cellular scale processes. Finally, our model elucidates processes involved in immunity to M. tuberculosis that may be new targets for therapy.
S Huang, et al.
Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.
Simulation and prediction of the adaptive immune response to influenza A virus infection.
Lee HY, et al.
The cellular immune response to primary influenza virus infection is complex, involving multiple cell types and anatomical compartments, and is difficult to measure directly. Here we develop a two-compartment model that quantifies the interplay between viral replication and adaptive immunity. The fidelity of the model is demonstrated by accurately confirming the role of CD4 help for antibody persistence and the consequences of immune depletion experiments. The model predicts that drugs to limit viral infection and/or production must be administered within 2 days of infection, with a benefit of combination therapy when administered early, and cytotoxic CD8 T cells in the lung are as effective for viral clearance as neutralizing antibodies when present at the time of challenge. The model can be used to investigate explicit biological scenarios and generate experimentally testable hypotheses. For example, when the adaptive response depends on cellular immune cell priming, regulation of antigen presentation has greater influence on the kinetics of viral clearance than the efficiency of virus neutralization or cellular cytotoxicity. These findings suggest that the modulation of antigen presentation or the number of lung resident cytotoxic cells and the combination drug intervention are strategies to combat highly virulent influenza viruses. We further compared alternative model structures, for example, B-cell activation directly by the virus versus that through professional antigen-presenting cells or dendritic cell licensing of CD8 T cells.
C Ziraldo, et al
Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. Although many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likely key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. Given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.
This meeting is hosted by the Integrated Training in Microbial Systems (ITiMS) program at the University of Michigan and is sponsored by the Burroughs Wellcome Fund.