VOLCANOES AND PLATE TECTONICS
VOLCANO TYPES & CHARACTERISTIC and ERUPTION STYLES
What does an active volcano look like?
Climbing up Mount St. Helens and looking into the crater at the steaming dome is an incredible experience. The slope is steep and the landscape is like something from another planet. Nothing's alive up there, except maybe a bird. When you're standing on the top, you can see other Cascades volcanoes: Mt. Adams, Rainier, Hood, Jefferson, and sometimes more.
A volcano is a vent through which molten rock and gas escape from a magma chamber. Volcanoes differ in many features, such as height, shape, and slope steepness. Some volcanoes are tall cones, and others are just cracks in the ground (Figure below). As you might expect, the shape of a volcano is related to the composition of its magma. The three types of volcanoes are composite, shield, and cinder cones.
Composite Volcanoes
Mt. Fuji is a well-known composite volcano.
Figure above shows Mt. Fuji, a classic example of a composite volcano. Composite volcanoes have broad bases and steep sides. These volcanoes usually have a large crater at the top. The crater was created during the volcano's last eruption.
Composite volcanoes are also called stratovolcanoes. This is because they are formed by alternating layers (strata) of magma and ash (Figure below). The magma that creates composite volcanoes tends to be thick. The steep sides form because the lava cannot flow too far from the vent. The thick magma may also create explosive eruptions. Ash and pyroclasts erupt into the air. Much of this material falls back down near the vent. This creates the steep sides of stratovolcanoes. The composition of magma that erupts at composite volcanoes is usually felsic (rhyolite) or intermediate (andesite).
A cross section of a composite volcano reveals alternating layers of rock and ash. Frequently there is a large crater at the top from the last eruption.
Composite volcanoes are common along convergent plate boundaries. When a tectonic plate subducts, it melts. This creates the thick magma needed for these eruptions. The Pacific Ring of Fire is dotted by composite volcanoes.
Shield Volcanoes
Mauna Kea volcano in Hawaii.
Shield volcanoes look like a huge ancient warrior’s shield laid down. Pictured above is Mauna Kea Volcano (Figure above) taken from Mauna Loa Volcano. Both volcanoes are part of the Big Island of Hawaii. A shield volcano has a very wide base. It is much flatter on the top than a composite volcano. The lava that creates shield volcanoes is relatively thin. The thin lava spreads out. This builds a large, flat volcano, layer by layer. The composition of lava at shield volcanoes is mafic. Shield volcanoes are very large. For example, the Mauna Loa Volcano has a diameter of more than 112 kilometers (70 miles). The volcano forms a significant part of the island of Hawaii. The top of nearby Mauna Kea Volcano is more than ten kilometers (6 miles) from its base on the seafloor.
Shield volcanoes often form along divergent plate boundaries. They also form at hotspots, like Hawaii. Shield volcano eruptions are non-explosive.
Cinder Cones
Cinder cones are the smallest and most common type of volcano. Cinder cones have steep sides like composite volcanoes. But they are much smaller, rarely reaching even 300 meters in height. Cinder cones usually have a crater at the summit. Cinder cones are composed of small fragments of rock, called cinders. The cinders are piled on top of one another. The cinders can be mafic, intermediate, or felsic in composition. These volcanoes usually do not produce streams of lava. Cinder cones often form near larger volcanoes. Most composite and shield volcanoes have nearby cinder cones.
Cinder cones usually build up very rapidly. They only erupt for a short time. Many only produce one eruption. For this reason, cinder cones do not reach the sizes of stratovolcanoes or shield volcanoes (Figure below).
A cinder cone volcano in Lassen National Park.
Magma composition determines both eruption type and volcano type.
Composite volcanoes are common at convergent boundaries. Shield volcanoes are produced at divergent plate boundaries and intraplate.
Cinder cones are made of small fragments of a variety of compositions usually from a single eruption. They are found with composite and shield volcanoes.
VOLCANIC STAGES
ACTIVE VOLCANOES
Active volcanoes are currently erupting, or showing signs of eruption soon.
DORMANT VOLCANOES
Dormant volcanoes have no current activity, but have erupted recently.
EXTINCT VOLCANOES
Extinct volcanoes have had no activity for a long time, and will probably not erupt again.
PREDICTING & MONITORING VOLCANOES
There are lots of signs that are examined, depending on how closely monitored the particular volcano is. Probably the most common type of monitoring is by seismicity. Even one seismometer can tell if there is an increase of seismic activity on a usually seismically-quiet volcano. If you have at least 3 seismometers, and they are strategically placed, you can triangulate on earthquakes to see if they are occurring in a place that indicates perhaps magma movement. By examining the seismic data over a period of time you may be able to determine if the earthquakes are migrating towards the surface (suggesting that magma is also migrating towards the surface since the earthquakes are probably being generated as magma breaks rocks that are in its way).
Another type of data that is used is the study of ground deformation. When magma moves up into the shallow plumbing of a volcano, it takes up space and pushes the surrounding rock outward. This also causes the surface of the volcano to deform. Some points move upward and any two points will move farther apart. By using very accurate leveling and distance-measuring techniques, these surface changes can be measured. Usually the changes are a few mm over a distance of a few hundred meters, but sometimes they are dramatic. For example prior to many eruptions at Kilauea, the summit bulges 1-2 meters upward. In the last few days prior to the big Mt. St. Helens eruption the northern flank was bulging outward at a few meters per day!
Some people like to monitor volcanoes by constantly monitoring gases that come out of fumaroles. Most active volcanoes have fumaroles where volcanic gases escape to the surface. It is relatively easy to monitor the temperatures of these gases, and an anomalous increase in temperature might be a sign that magma has moved closer to the surface. Monitoring the composition of the gases is more difficult to do, and changes in the composition are way more difficult to interpret. Many times just visual changes to fumarole areas are indications of impending activity. If the area of active degassing gets larger, if the plants nearby die suddenly, if the color of any lakes or ponds nearby changes...Many volcanoes have summit lakes through which heat and gases rise to the surface and escape. Many of these lakes have strange colors due to all the dissolved minerals in them, and many of the colored ones change color, pH, temperature, etc. These too, are signs of change below but are often difficult to interpret.
A number of people are studying ways in which to use satellite data to monitor volcanoes. It is possible to obtain thermal images of volcanic areas, and by comparing images on a monthly or bi-weekly basis, increases or decreases in temperatures can be detected. Additionally, some new technologies have allowed for the determination of very accurate topography from satellite data. This technology may someday allow for the remote monitoring of surface deformation associated with sub-surface magma movement. This process is still being developed. It usually takes too long to get satellite data processed for this technique to be useful in a rapidly-escalating crisis so it would be used over the long term, in the years to months prior to an eruption rather than the hours prior.
Image: Seismograph in action at Pinatubo response. A glance at the seismogram wrapped around the drum gives experienced volcanologists a quick appreciation of the current level of seismic activity at the volcano. Photo by R.P. Hoblitt.
MEASURING
The Volcanic Explosivity Index (VEI) is a measure of the explosiveness of volcanic eruptions.
It was devised by Chris Newhall of the United States Geological Survey and Stephen Self at the University of Hawaii in 1982.
The index is based on a scale of 1 to 8, 1 being very small, and 8 being huge and very rare. The level of an eruption is based upon:
Volume of products
Eruption cloud height
Qualitative observations (using terms ranging from "gentle" to "mega-colossal")
A value of 0 is given for non-explosive eruptions, defined as less than 10,000 m3 (350,000 cu ft) of tephra ejected; and 8 representing a mega-colossal explosive eruption that can eject 240 cubic miles of tephra and have a cloud column height of over 20 km (12 mi).