Research

What I Study

Computability theory (also known as Recursion Theory) formalizes what computation is.  In some of my work, I study  the "balance scales"  used to compare computational information.  But I also use these calibration tools to measure the computational power of specific problems about mathematical structures -- such work is termed  Computable Structure Theory.   I particularly focus on algebraic and discrete structures (such as linear orderings, real and algebraically closed fields, and integer parts).

Introductions to Computability

These talks of mine highlight the big ideas of computability theory:

Climbing (or finding paths through) trees: Computing the difficulty of mathematical problems (47 minutes)  SUMS@JMU 2021 Conference (aimed at undergraduates)

Different Problems, Common Threads: Computing the difficulty of mathematical problems (56 minutes) JMM 2020 Conference (aimed at mathematicians)

Research Publications   ╲╱

Reducibilities, Degree Theory, Lattice of c.e. Sets

Computable Structure Theory

Model theory, Weak arithmetic

Other