A parallel robot possesses the multi-branched closed-loop structure, which consists of two or more kinematic branches connecting the base and the end effector. Parallel robots possess the distinctive features of high stiffness, high load capacity, and high accuracy with closed kinematic chains. However, the multi-branched closed-loop structure also brings some unavoidable shortcomings to parallel robots, such as the limited workspace and complex singularities. Singularity further reduces the available workspace.
Since the number of joints is much greater than the degrees-of-freedom number in parallel robots, only part of the joints is actuated while others are not. Therefore, various actuation modes, i.e., different choosing schemes of active joints, are available for parallel robots. Different actuation modes will inevitably change the kinematic performance of the parallel robot. Actuation conversion is a potential way to improve the kinematic and dynamic performance of the parallel robot.
Motivated by this idea, we investigated the variable-actuated kinematic chains, variable-actuated parallel robots and the method for improving the performance via actuation mode conversion. Several variable-actuated kinematic branch chains with nine driving modes and real-time driving mode conversion ability were designed. Based on the proposed variable-actuated kinematic chains, the variable-actuated 5R, 3-RRR and 3-RPaS parallel robots were designed. The kinematics performance of the variable-actuated parallel robots was analyzed by using the motion/force transmission index. The change rule of the kinematic performance of the variable-actuated parallel robot under different actuation modes were clarified. A new approach to improve the kinematic performance of parallel robots by transforming actuation modes was established.
RRR、RRS和RRP支链是并联机器人中的典型运动链。该类型支链中的前两个转动关节均可作为驱动关节。取单个RRR或RRS支链作为研究对象,通过改变电机输出力矩和反作用力矩的施加位置,可以得到单个RRR支链的三种驱动方式,分别为:驱动方式a:驱动第一个R关节,即驱动第一连杆的绝对角度。驱动方式b:驱动第二个R关节,即驱动第一连杆和第二连杆的相对角度。驱动方式c:驱动第二连杆的绝对角度。在支链驱动方式b和c中,电机驱动力需要作用于第二R关节。为实现电机力矩向第二R关节的传递和反作用力矩在基座和第一连杆之间的切换,必须合理设计传动机构。图1是几种能实现变驱动功能的传动方式。根据选定的传动方式,设计了驱动模式转换模块,实时切换电机和杆件的连接方式,以切换输出力矩和反作用力矩的作用位置达到变驱动的目的。
采用电磁离合器和两个电磁制动器,设计了基于带传动和平行四边形结构的变驱动运动支链及驱动模式切换模块设计方案,如图2和图3所示。通过控制电磁离合器和制动器的接合与分离状态,能很好地实现电机外壳体和电机输出轴与不同部件的连接及其连接方式的实时变换,切换支链的驱动模式。
使用变驱动RRR支链,设计开发了变驱动5R并联机构和平面3-RRR并联机构,其中5R机构可实现9种驱动模式,3-RRR支链可实现27种驱动模式。使用基于平行四边形的变驱动RPaS支链,设计了具有2R1T自由度的空间3-RPaS并联机构,可实现27种驱动模式,各变驱动机器人如图所示。
利用运动/力传递性能指标对各变驱动机构的运动性能进行分析。以并联3-RRR机构为例,如图示意了不同驱动模式下机构运动性能指标的对比以及机器人工作空间内奇异轨迹的对比。可以看出,机构在不同驱动模式下的性能具有明显差别。
通过图9的图谱可以发现,在工作空间内的某一点,当机构采用不同的驱动模式工作时,其性能存在明显差异。各类驱动模式的运动学性能较优区域在工作空间的位置各不相同。在工作空间内任一点,为得到最优的运动学性能,机构应采用在该点性能最优的驱动模式进行工作。将在该点的OLTI值取得最大值的驱动模式称为该点的最优驱动模式。由此可得参数为R = 500mm,r = 100mm,l1 = l2 = 350mm,动平台转角为15°时3-RRR机构在工作空间内的最优驱动模式变换图谱如图11所示。
得到机构动平台角度从-90°和90°变化时,机构在驱动模式I和最优驱动模式工作时OLTI指标分布对比如图12所示。对整个立体工作空间中各离散点的OLTI指标值进行统计,得OLTI指标数值在各区间的比例分布如图13所示。采用模式I驱动时,机构在整体工作空间中OLTI指标值小于0.3区域占比为49.81%,大于0.7区域占比为12.21%。而当机构采用最优模式驱动时,上述两个值分别为12.86%和30.6%,采用变驱动的方式明显提高了机构性能。由图12进一步可知,当机构采用最优驱动模式工作时,可达工作空间内部不再出现OLTI=0的区域,即可达工作空间内不再存在奇异点。
同样,变驱动5R机构和变驱动3-RPaS机构也可以通过工作空间内的驱动变换提升空间内的运动学性能,并消除内部奇异,使得工作空间的利用率最大化。
Liping Wang, Zhaokun Zhang, Zhufeng Shao, Xiaoqiang Tang. Analysis and Optimization of a Novel Planar 5R Parallel Mechanism with Variable Actuation Modes. Robotics and Computer-Integrated Manufacturing, 2019, 56: 178–190. DOI: 10.1016/j.rcim.2018.09.010.
Liping Wang, Zhaokun Zhang, Zhufeng Shao. Kinematic Performance Analysis and Promotion of a Spatial 3-RPaS Parallel Manipulator with Multiple Actuation Modes. Journal of Mechanical Science and Technology, 2019, 33(2): 889-902. DOI: 10.1007/s12206-019-0146-z.
Zhaokun Zhang, Liping Wang, Zhufeng Shao. Improving the Kinematic Performance of a Planar 3-RRR Parallel Manipulator through Actuation Mode Conversion. Mechanism and Machine Theory, 2018, 130: 86-108. DOI: 10.1016/j.mechmachtheory.2018.08.011.