Tomohiro Asano, Stéphane Guillermou, Yuichi Ike, and Claude Viterbo
Regular Lagrangians are smooth Lagrangians
J. Math. Soc. Japan (JMSJ)
DOI: 10.2969/jmsj/93799379, arXiv:2407.00395
Yuichi Ike and Tatsuki Kuwagaki
Tamarkin's separation theorem for non-compact objects in cotangent bundles
Proc. Amer. Math. Soc. 153(8), 3555--3561, 2025
DOI: 10.1090/proc/17228, arXiv:2406.08247
Tomohiro Asano , Yuichi Ike, and Wenyuan Li
Lagrangian cobordism and shadow distance in Tamarkin category
Sel. Math. New Ser. 31, 45, 2025
DOI: 10.1007/s00029-025-01034-9, arXiv:2312.14429
Tomohiro Asano and Yuichi Ike
Completeness of derived interleaving distances and sheaf quantization of non-smooth objects
Math. Ann. 390, 2991--3037, 2024
DOI: 10.1007/s00208-024-02815-x (view-only link), arXiv:2201.02598
Tomohiro Asano, Stéphane Guillermou, Vincent Humilière, Yuichi Ike, and Claude Viterbo
The γ-support as a micro-support
Comptes Rendus. Mathématique 361, 1333--1340, 2023
DOI: 10.5802/crmath.499, arXiv:2211.13945
Tomohiro Asano and Yuichi Ike
Sheaf quantization and intersection of rational Lagrangian immersions
Ann. Inst. Fourier 73(4), 1533--1587, 2023
DOI: 10.5802/aif.3554, arXiv:2005.05088
Tomohiro Asano and Yuichi Ike
Persistence-like distance on Tamarkin's category and symplectic displacement energy
J. Symp. Geom 18(3), 613--649, 2020
DOI: 10.4310/JSG.2020.v18.n3.a1, arXiv:1712.06847
Yuichi Ike
Compact exact Lagrangian intersections in cotangent bundles via sheaf quantization
Publ. RIMS, Kyoto Univ. 55(4) 737--778, 2019
DOI: 10.4171/PRIMS/55-4-3, arXiv:1701.02057
Yuichi Ike and Tatsuki Kuwagaki
Categorical localization for the coherent-constructible correspondence
Publ. RIMS, Kyoto Univ. 55(1) 1--24, 2019
DOI: 10.4171/PRIMS/55-1-1, arXiv:1609.01177
Naoki Nishikawa, Yuichi Ike, and Kenji Yamanishi
Adaptive Topological Feature via Persistent Homology: Filtration Learning for Point Clouds
Advances in Neural Information Processing Systems 36 (NeurIPS 2023)
article link, arxiv:2307.09259
Thibault de Surrel, Felix Hensel, Mathieu Carrière, Théo Lacombe, Yuichi Ike, Hiroaki Kurihara, Marc Glisse, and Frédéric Chazal
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds
Proceedings of Topological, Algebraic, and Geometric Learning Workshops 2022, PMLR 196:96-106, 2022.
article link, arXiv:2202.01725
Yasuaki Hiraoka, Yuichi Ike, and Michio Yoshiwaki
Algebraic stability theorem for derived categories of zigzag persistence modules
Journal of Topology and Analysis, 2022
DOI: 10.1142/S1793525322500091, arXiv:2006.06924
Théo Lacombe, Yuichi Ike, Mathieu Carrière, Frédéric Chazal, Marc Glisse, and Yuhei Umeda
Topological Uncertainty: Monitoring trained neural networks through persistence of activation graphs
Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI 2021), 2021
article link, arXiv:2105.04404
Mathieu Carrière, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hariprasad Kannan, and Yuhei Umeda
Optimizing persistent homology based functions
Proceedings of the 38th International Conference on Machine Learning (ICML 2021), 2021; oral presentation
article link, arXiv:2010.08356
Martin Royer, Frédéric Chazal, Clément Levrard, Yuhei Umeda, and Yuichi Ike
ATOL: Measure Vectorization for Automatic Topologically-Oriented Learning
Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021), 2021
article link, arXiv:1909.13472
Mari Kajitani, Ken Kobayashi, Yuichi Ike, Takehiko Yamanashi, Yuhei Umeda, Yoshimasa Kadooka, and Gen Shinozaki
Application of Topological Data Analysis to Delirium Detection
Topological Data Analysis and Beyond, Workshop at NeurIPS 2020, 2020
article link (OpenReview)
Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei Umeda
PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures
Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020), 2020
article link, arXiv:1909.13472
Hirokazu Anai, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hiroya Inakoshi, Raphaël Tinarrage, and Yuhei Umeda
DTM-based filtrations
Proceedings of 35th International Symposium on Computational Geometry (SoCG 2019)/Topological Data Analysis. Abel Symposia, vol 15
DOI: 10.1007/978-3-030-43408-3_2, arXiv:1811.04757
Yuichi Ike, Yutaka Matsui, and Kiyoshi Takeuchi
Hyperbolic localization and Lefschetz fixed point formulas for higher-dimensional fixed point sets
Int. Math. Res. Not. 2018(15), 4852--4898, 2017
DOI: 10.1093/imrn/rnx030, arXiv:1504.04185
Supplement: Yuichi Ike; Hyperbolic localization via shrinking subbundles arXiv:1602.04651
Yuichi Ike
Microlocal Lefschetz classes of graph trace kernels
Publ. RIMS, Kyoto Univ. 52(1), 83--101, 2016
DOI: 10.4171/PRIMS/175, arXiv:1504.05439
Shoki Yamao, Ken Kobayashi, Kentaro. Kanamori, Takuya Takagi, Yuichi Ike, and Kazuhide Nakata
Distribution-aligned sequential counterfactual explanation with local outlier factor
Proceedings of the 21st Pacific Rim International Conference on Artificial Intelligence (PRICAI2024)
DOI: 10.1007/978-981-96-0116-5_20
Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Yuichi Ike
Learning Decision Trees and Forests with Algorithmic Recourse
Proceedings of the 41st International Conference on Machine Learning (ICML2024), 2024; spotlight presentation
article link, arXiv:2406.01098
Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Yuichi Ike
Counterfactual Explanation Trees: Transparent and Consistent Actionable Recourse with Decision Trees
Proceedings of the 25th International Conference on Artificial Intelligence and Statistics (AISTATS 2022), 2022
article link
Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike, Kento Uemura, and Hiroki Arimura
Ordered Counterfactual Explanation by Mixed-Integer Linear Optimization
Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI2021), 2021
DOI: 10.1609/aaai.v35i13.17376, arXiv:2012.11782
Felix Hensel, Charles Arnal, Mathieu Carrière, Théo Lacombe, Hiroaki Kurihara, Yuichi Ike, and Frédéric Chazal
MAGDiff: Covariate Data Set Shift Detection via Activation Graphs of Deep Neural Networks
Transactions on Machine Learning Research (TMLR), May 2024
article link (OpenReview), arXiv:2305.13271
Ryo Yuki, Yuichi Ike, and Kenji Yamanishi
Dimensionality selection for hyperbolic embedding using decomposed normalized maximum likelihood code-length
Knowledge and Information Systems, 2023
DOI: 10.1007/s10115-023-01934-2
Ryo Yuki, Yuichi Ike, and Kenji Yamanishi
Dimensionality Selection of Hyperbolic Graph Embeddings using Decomposed Normalized Maximum Likelihood Code-Length
2022 IEEE International Conference on Data Mining (ICDM), 666--675, 2022
DOI: 10.1109/ICDM54844.2022.00077
Kohei Ueda, Yuichi Ike, and Kenji Yamanishi
Change Detection with Probabilistic Models on Persistence Diagrams
2022 IEEE International Conference on Data Mining (ICDM), 1191--1196, 2022
DOI: 10.1109/ICDM54844.2022.00153
Takefumi Hiraki, Tomohiro Hayase, Yuichi Ike, Takashi Tsuboi, and Michio Yoshiwaki
Viewpoint Planning of Projector Placement for Spatial Augmented Reality using Star-Kernel Decomposition
2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 2021
DOI: 10.1109/VRW52623.2021.00174
渡邉陽太, 川畑佑典, 三浦達彦, 池祐一, 江間陽平, 剱持智哉, 松原宰栄, 米田剛, 千葉優作, 柏原崇人
磁気流体緩和法の初期条件依存性∼磁力線形状とエネルギー∼
数理科学実践研究レター 2018, LMSR 2018-20, 2018
DOI: 10.15083/00076820
川畑佑典, 三浦達彦, 渡邉陽太, 池祐一, 江間陽平, 剱持智哉, 松原宰栄, 米田剛, 千葉優作, 柏原崇人
磁気流体緩和法の初期条件依存性∼force-free alphaの空間分布∼
数理科学実践研究レター 2018, LMSR 2018-10, 2018
DOI: 10.15083/00076811
池祐一
位相的データ解析と機械学習への応用
応用数理学会誌「応用数理」, 31 巻, 3 号, 2022
DOI: 10.11540/bjsiam.32.3_139
代数解析学と層:佐藤超函数やD加群との関連,雑誌「数理科学」2025年9月号 No.747 多彩な拡がりをもつ《層》の魅力,pp.30-37,サイエンス社,2025. 記事PDF,正誤表
パーシステントホモロジーと機械学習,雑誌「数理科学」2023年6月号 No.720 トポロジカルデータ解析の拡がり
Microlocal sheaf theory and energy estimates in symplectic geometry, The 68th geometry symposium
層の圏上のパーシステンス的距離とシンプレクティック幾何における分離エネルギー, The 68th topology symposium
Tomohiro Asano, Yuichi Ike, Christopher Kuo, and Wenyuan Li
C^0-rigidity of Legendrians and coisotropics via sheaf quantization
preprint (2025)
arXiv:2510.01746
Tomohiro Asano and Yuichi Ike
The rectifiable rectangular peg problem
preprint (2024)
arXiv:2412.21057
Yuichi Ike and Tatsuki Kuwagaki
Microlocal categories over Novikov rings
preprint (2023)
arXiv:2307.01561
Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Yuichi Ike
Counterfactual Explanation with Missing Values
preprint (2023)
arXiv:2304.14606
池 祐一,E. G. エスカラ,大林一平,鍛冶静雄
位相的データ解析から構造発見へ:パーシステントホモロジーを中心に
AI/データサイエンス ライブラリ “基礎から応用へ”,サイエンス社.link
Tomohiro Asano and Yuichi Ike
A note on Hamiltonian stability for sheaves
preprint (2023), merged into "Completeness of derived interleaving distances and sheaf quantization of non-smooth objects"
arXiv:2301.10598
Ryosuke Masuya, Yuichi Ike, and Hiroshi Kera
Vanishing Component Analysis with Contrastive Normalization
preprint (2022)
arXiv:2210.16171
Yasuhiko Asao and Yuichi Ike
Curvature of point clouds through principal component analysis
preprint (2021)
arXiv:2106.09972