Journal Article

2023

90. Your name here

89. El Said A. Nouh, Tianyu Liu, Zacary Croft, Guoliang Liu*, “Vascular Bundle for Exceptional Water Confinement, Transport and Evaporation”, ACS Materials Letters, 2023, accepted.

88. Dong Guo, Liqin, Mu, Feng Lin, Guoliang Liu*, “Mesoporous Polyimide Thin Films as Dendrite-Suppressing Separators for Lithium-Metal Batteries”, ACS Nano, 2023, DOI: 10.1021/acsnano.3c04159.

87. Guoliang Liu*, “Block Copolymer Derived Porous Carbon Fiber: An Emerging Structural Functional Material”, Macromolecules, 2023, DOI: 10.1021/acs.macromol.3c01528.

86. Zhen Xu, Nuwayo Eric Munyaneza, Qikun Zhang, Mengqi Sun, Carlos Posada, Paul Venturo, Nicholas A. Rorrer, Joel Miscall, Bobby Sumpter*, Guoliang Liu*, “Chemical upcycling of polyethylene, polypropylene, and mixtures to high-value surfactants”, Science, 2023, 381, 666–671. DOI: https://doi.org/10.1126/science.adh0993.


Free link to download here.


Almetric Score ~ 800; Featured by over 100 News Media, such as

Fox 5 Live TV: 

https://www.fox5dc.com/video/1262753

Phys.Org: 

https://phys.org/news/2023-08-method-upcycling-plastic-soap.amp

The Guardian: 

https://amp.theguardian.com/environment/2023/aug/10/scientists-turn-old-plastic-into-soap-polyethylene-fatty-acids-pollution

EurekAlert:

https://www.eurekalert.org/news-releases/998067

New Scientist:

https://www.newscientist.com/article/2387046-plastic-bags-and-bottles-can-be-recycled-into-soap/


85. Nuwayo Eric Munyaneza, Carlos Posada, Zhen Xu, Vincenzo De Altin Popiolek, Griffin Paddock, Charles McKee, Guoliang Liu*, “A Generic Platform for Upcycling Polystyrene to Aryl Ketones and Organosulfur Compounds”, Angewandte Chemie International Edition, 2023, e202307042. DOI: 10.1002/anie.202307042

Featured by: 

https://phys.org/news/2023-07-recovering-valuable-chemical-blocks-polystyrene.html


84. Grayson Johnson, Moon Young Yang, Chang Liu, Hua Zhou, Xiaobing Zuo, Diane A. Dickie, Sihan Wang, Wenpei Gao, Bukuru Anaclet, Frédéric A. Perras, Fuyan Ma, Chenjie Zeng, Da Wang, Sara Bals, Sheng Dai, Zhen Xu, Guoliang Liu, William A. Goddard III*, Sen Zhang,* “Nanocluster Superstructures Governed by High-Temperature Ligand Switching”, Nature Synthesis, 2023, in print. DOI: 10.1038/s44160-023-00304-8

83. Lei Tao, Jinlong He, Nuwayo Eric Munyaneza, Vikas Varshney, Wei Chen, Guoliang Liu, Ying Li*, “Discovery of Multi-Functional Polyimides through High-Throughput Screening using Explainable Machine Learning”, Chemical Engineering Journal, 2023, 465, 142949. DOI: 10.1016/j.cej.2023.142949

82. Shi-qin Li, Yuan Deng, Jiang Huang, Pu Wang, Guoliang Liu*, He-Lou Xie*, “Light-Absorbing Copolymers of Polyimides as Efficient Photothermal Materials for Solar Water Evaporation”, Aggregate, 2023, in print. DOI: 10.1002/agt2.371. 

81. Mengqi Sun, Zhen Xu, Nuwayo Eric Munyaneza, Yue Zhang, Carlos Posada, Guoliang Liu*, “Solvent-induced Competing Processes in Polycarbonate Degradation: Depolymerization, Chain Scission, and Branching/Crosslinking”, Polymer Chemistry, 2023, 14, 1915-1922. DOI: 10.1039/D2PY01572B

80. Juan Diego Shiraishi Lombard, Tianyu Liu, Guoliang Liu, Carolina Tallon*, “Thermal treatment of electrospun polystyrene fibers: microstructural evolution and mechanical behavior”, Journal of Materials Science, 2023, 58, 6009–6024. DOI: 10.1007/s10853-023-08339-0

2022


79. Zhen Xu, Fuping Pan, Mengqi Sun, Jianjun Xu, Nuwayo Eric Munyaneza, Zacary L. Croft, Gangshu (George) Cai, and Guoliang Liu*, “Cascade Degradation and Upcycling of Polystyrene Waste to High-Value Chemicals”, Proceedings of the National Academy of Sciences U.S.A., 2022, 119, 34, e2203346119. DOI: 10.1073/pnas.2203346119.


https://vtx.vt.edu/videos/k/2023/02/1_91zhxxwz.html?utm_source=cmpgn_news&utm_medium=email&utm_campaign=vtUnirelNewsDailyCMP_021423-fs


Featured by: 

https://phys.org/news/2022-08-recycle-polystyrene-valuable-products.html

https://www.sciencedaily.com/releases/2022/08/220823115625.htm

https://www.newscientist.com/article/2333758-simple-chemistry-can-recycle-polystyrene-into-more-valuable-products/

https://www.scimex.org/newsfeed/promising-new-method-for-upcycling-polystyrene

https://epaper.tagesspiegel.de/article/1535ae4327cd01dceace389b9f5074019507ac86c97cc55b9d1c1e42672aaf1c

http://www.polymer.cn/sci/kjxw20178.html

https://isca.dufe.edu.cn/content_67199.html

https://newatlas.com/materials/uv-treatment-polystrene-recycling-economically-viable/

https://www.inverse.com/innovation/recycling-polystyrene-chemical

https://vtx.vt.edu/articles/2022/08/one-industrys-trash-polystyrene.html?utm_source=cmpgn_news&utm_medium=email&utm_campaign=vtUnirelNewsDailyCMP_082222-fs

https://www.rnz.co.nz/national/programmes/ninetonoon/audio/2018855287/science-pesticides-and-bee-brains-low-gravity-droplets (radio at: 5'18'')

https://www.azocleantech.com/news.aspx?newsID=32150

https://www.labcompare.com/617-News/589355-New-Method-Upcycles-Polystyrene-into-Valuable-Manufacturing-Material/

https://qspapers.com/a-method-for-converting-polystyrene-into-more-value-items/


78. John P. Elliott, Naresh C. Osti, Madhusudan Tyagi, Eugene Mamontov, Lifeng Liu, Joel M. Serrano, Ke Cao, Guoliang Liu*, “Exceptionally Fast Ion Diffusion in Block Copolymer-Based Porous Carbon Fibers”, ACS Applied Materials & Interfaces, 2022, in print. DOI: 10.1021/acsami.2c12755.

77. Kai Lan, Yuan Deng, Ao Huang, Shi-Qin Li, Guoliang Liu*, He-Lou Xie*, “Highly-performance polyimide as an efficient photothermal material for solar-driven water evaporation”, Polymer, 2022, 256, 125177. DOI: 10.1016/j.polymer.2022.125177.

76. Joel M. Serrano, Glenn A. Spiering, Zhen Xu, Zacary L. Croft, Dong Guo, Ke Cao, Robert B. Moore, Guoliang Liu*, “Humidity-Controlled Preparation of Flexible Porous Carbon Fibers from Block Copolymers”, ACS Applied Polymer Materials, 2022, accepted. DOI: 10.1021/acsapm.2c00534.

75. Joel M. Serrano, Tianyu Liu, Dong Guo, Zacary L. Croft, Ke Cao, Assad U. Khan, Zhen Xu, Elsaid Nouh, Shengfeng Cheng, Guoliang Liu*, “Utilization of Block Copolymers to Understand Water Vaporization Enthalpy Reduction in Uniform Pores”, Macromolecules, 2022, 55, 11, 4803–4811. DOI: 10.1021/acs.macromol.2c00092.

74. Shilun Gao, Zhenxi Li, Nian Liu, Guoliang Liu, Huabin Yang*, Peng-Fei Cao*, “Are Porous Polymers Practical to Protect Li-Metal Anodes? - Current Strategies and Future Opportunities”, Advanced Functional Materials, 2022, accepted. DOI: 10.1002/adfm.202202013.

73. Jyotsna Ramachandran, Joel M. Serrano, Tianyu Liu, Jinwon Cho, Pedro J. Arias-Monje, Mingxuan Lu, Mohammad Hamza Kirmani, John Elliott, Seung Soon Jang, Guoliang Liu*, Satish Kumar*, “Porous Carbon Fibers from Gel-spun Polyacrylonitrile and Poly(methyl methacrylate)-block­-Poly(acrylonitrile)”, Carbon, 2022, 192, 332e346.

72. Dong Guo, Dong Guo, Wenqi Zhao, Fuping Pan, and Guoliang Liu*, “Block Copolymer-Derived Porous Carbon Fibers Enabled High MnO2 Loading and Fast Charging in Aqueous Zinc Ion battery”, Batteries & Supercaps, 2022, e202100380. DOI: 10.1002/batt.202100380.

71. Blaise Ostertag, Michael Cryan, Joel M. Serrano, Guoliang Liu, Ashley Ross*, “Porous Carbon Nanofiber-Modified Carbon-Fiber Microelectrodes for Dopamine Detection”, ACS Applied Nano Materials, 2022, 5, 2, 2241–2249. DOI: 10.1021/acsanm.1c03933.

70. Samson N. Dada, Godwin K. Babanyinah, Michael T. Tetteh, Victoria E. Palau*, Zachary F. Walls, Koyamangalath Krishnan, Zacary Croft, Assad U. Khan, Guoliang Liu, Thomas E. Wiese, Ellen Glotser, and Hua Mei*, “Covalent and Noncovalent Loading of Doxorubicin by Folic Acid-Carbon Dot Nanoparticles for Cancer Theranostics”, ACS Omega, 2022, in print. DOI: 10.1021/acsomega.2c01482.

69. Aimane Najmeddine, Zhen Xu, Gehui Liu, Zacary L. Croft, Guoliang Liu, Alan R. Esker, Maryam Shakiba*, “Physics and Chemistry-based Constitutive Modeling of Photo-oxidative Aging in Semi-Crystalline Polymers”, International Journal of Solids and Structures, 2022, 239-240, 111427. DOI: 10.1016/j.ijsolstr.2022.111427.

68. Zac Croft, Zhen Xu, Ke Cao, Dong Guo, Saran Sreeharikesan, Connor Thompson, Gabriel Zeltzer, Guoliang Liu*, “Can the Voigt Model be Directly Used for Determining the Modulus of Graphene in Laminate Thin Films?”, ACS Applied Polymer Materials, 2022, 4, 1, 394–402. DOI: 10.1021/acsapm.1c01328.

2021

67. Wenqi Zhao, Zhen Xu, John Elliott, Cindy S. Barrera, Zacary L. Croft, Haibo Zhao, Janice Tardiff, Guoliang Liu*, “Enhanced Mechanical Properties of Natural Rubber by Block Copolymer-based Porous Carbon Fibers”, ACS Applied Polymer Materials, 2021, in DOI: 10.1021/acsapm.1c01329.

66. Ke Cao, Zhen Xu, Dong Guo, Guoliang Liu*, “Poly(ether imide)s with Tailored End Groups”, Journal of Polymer Science, 2021, DOI: 10.1002/pol.20210313.

65. Zhen Xu, Zacary L. Croft, Dong Guo, Ke Cao, Guoliang Liu*, “Recent development of high-performance polyimides: synthesis, processing, and application”, Journal of Polymer Science, 2021, 59, 943–962. DOI: 10.1002/pol.20210001.

64. Zhen Xu, Gehui Liu, Ke Cao, Dong Guo, Joel Serrano, Alan Esker*, Guoliang Liu*, “Solvent-resistant Self-crosslinked Poly(ether imide)”, Macromolecules, 2021, 54, 7, 3405–3412. DOI: 10.1021/acs.macromol.0c02860.

63. Dong Guo, Jocelyn Riet,U Assad Khan, Yichen Guo, Zhen Xu, Tianyu Liu, Guoliang Liu*, “2021 Pioneering Investigator Issue: Mesoporous Polyetherimide Thin Films via Hydrolysis of Polylactide-b-Polyetherimide-b-Polylactide”, Polymer Chemistry, 2021, DOI: 10.1039/D1PY00601K.

62.  Assad U. Khan, Gabriel Zeltzer,* Gavriel Speyer, Zacary L. Croft, Yichen Guo, Yehiel Nagar, Vlada Artel, Adi Levi, Chen Stern, Doron Naveh,* Guoliang Liu,* “Mutually Reinforced Polymer-Graphene Bilayer Membranes for Energy-Efficient Acoustic Transduction”, Advanced Materials, 2021, 2004053. DOI: 10.1002/adma.202004053. 

2020

61. Joel Marcos Serrano, Assad U. Khan, Tianyu Liu, Alan R. Esker, Guoliang Liu,* “Capacitive Organic Dye Removal by Block Copolymer Based Porous Carbon Fibers”, Advanced Materials Interfaces, 2020, 2000507. DOI: 10.1002/admi.202000507.

60. Yin Wang, Xiaozhou Yang, Tianyu Liu, Zhao Li, David Leskauskas,U Guoliang Liu,* John B. Matson*, “Molecular-level control over plasmonic properties in silver nanoparticle/self-assembling peptide hybrids”, Journal of the American Chemical Society, 2020, 142(20), 9158-9162. DOI: 10.1021/jacs.0c03672

59. (Invited) Tianyu Liu, Guoliang Liu,* “Porous Organic Materials Offer Vast Future Opportunities”, Nature Communications, 2020, in print. 

58. Tianyu Liu, Joel M. Serrano, John Elliott, Xiaozhou Yang, William Cathcart, Zixuan Wang, Zhen He, Guoliang Liu,* “Exceptional capacitive deionization rate and capacity by block copolymer–based porous carbon fibers”, Science Advances, 2020, 6(16), eaaz0906.  DOI: 10.1126/sciadv.aaz0906

Featured by: VTNews; EurekAlert

Synopsis: Porous carbon fibers show exceptional capacitive desalination rate and capacity as an electrode, abou 40 times faster than some of the peer materials.

57. Zhen Xu, Tianyu Liu, Ke Cao, Dong Guo, Joel M. Serrano, Guoliang Liu,* “Thermally Stable and Mechanically Strong Mesoporous Films of Polyetherimide-based Triblock Copolymers”, ACS Applied Polymer Materials, 2020, 2, 1398−1405.  DOI: 10.1021/acsapm.0c00051.

56. (Invited) Ke Cao, Joel Serrano, Tianyu Liu, Benjamin Stovall, Guoliang Liu,* “Impact of Metal Cations on the Thermal, Mechanical, and Rheological Properties of Sulfonated Polyetherimides”, Polymer Chemistry, 2020, 11, 393-400. DOI: 10.1039/C9PY00899C.

55. (Invited) Ke Cao, Benjamin J. Stovall, Clay B. Arrington, Zhen Xu, Timothy E. Long, Roy R. Odle, Guoliang Liu,* “Facile Preparation of Halogen-Free Poly(ether imide) Containing Phosphonium and Sulfonate Groups”, ACS Applied Polymer Materials, 2020, 2, 1, 66-73. DOI: 10.1021/acsapm.9b00938.

54. (Invited) Zhengping Zhou, Tianyu Liu, Assad U. Khan, Guoliang Liu,* “Control the Physical and Electrochemical Properties of Block Copolymer-Based Porous Carbon Fibers by Pyrolysis Temperature”, Molecular Systems Design & Engineering, 2020, 5, 153-165. DOI: 10.1039/C9ME00066F. [DOI: 10.1039/C9ME00066F]

2019

53. Joel Marcos Serrano, Tianyu Liu, Assad U. Khan, Brandon Botset,U Benjamin J. Stovall, Zhen Xu, Dong Guo, Ke Cao, Xi Hao, Shengfeng Cheng, Guoliang Liu,* “Composition Design of Block Copolymers for Porous Carbon Fibers”, Chemistry of Materials, 2019, 31, 21, 8898-8907. DOI: 10.1021/acs.chemmater.9b02918.

52. Ke Cao, Yichen Guo, Mingxuan Zhang,U Clay B. Arrington, Timothy E. Long, Roy R. Olde, Guoliang Liu,* “Mechanically Strong, Thermally Stable, and Flame Retardant Poly(ether imide) Terminated with Phosphonium Bromide”, Macromolecules, 2019, 52(19), 7361-7368. DOI: 10.1021/acs.macromol.9b01465.

51. (Invited) Tianyu Liu, Guoliang Liu,* “Block Copolymer-Based Porous Carbons for Supercapacitors”, Journal of Materials Chemistry A, 2019, 7, 23476–23488. DOI: 10.1039/C9TA07770G.

50. Amy D. Goodson, Guoliang Liu, Maxwell S. Rick, Andrew W. Raymond, Md Fakar Uddin, Henry S. Ashbaugh*, Julie N. L. Albert*, “Nanostructure Stability and Swelling of Ternary Block Copolymer/Homopolymer Blends: A Direct Comparison Between Dissipative Particle Dynamics and Experiment”, Journal of Polymer Science Part B: Polymer Physics, 2019, 57, 794–803. [DOI: 10.1002/polb.24834]. 

49. Assad Khan, Yichen Guo, Xi Chen, Guoliang Liu,* “Spectral-selective plasmonic polymer nanocomposites across the visible and near-infrared”, ACS Nano, 2019, 13 (4), 4255–4266. [DOI: 10.1021/acsnano.8b09386.]

Synopsis: A thin layer of plasmonic nanoparticles, which are planarly oriented in a polymer nanocomposite, serve as an excellent coating for spectral-selectived tinted glass, enabling modern stained glass with heat-reflecting functionality.

48. Tianyu Liu, Zhengping Zhou, Yichen Guo, Dong Guo, Guoliang Liu,* “Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings”, Nature Communications, 2019, 10, 675. [DOI: 10.1038/s41467-019-08644-w.]

Featured by: EurekAlert; Tech Briefs; Physics.org; Our news; Newslocker; ScienceDaily;

Synopsis: Ultrathin MnO2 loaded on mesoporous carbon fibers (PCFs) exhibits ~85% of theoretical capacitance. The mass loading reaches 7mg/cm2 and yet compromises no charging rate capability.

Synopsis: Conventional syntheses of porous carbon fibers (PCFs) rely on blending PAN with sacrificial additives, which macrophase-separate and produce poorly-controlled pores. Herein we have utilized block copolymers for synthesizing PCFs with well-controlled bimodal mesopores and micropores, revolutionizing the synthesis of PCFs.  

46.  (Invited) Tianyu Liu, Guoliang Liu,*  “Block Copolymers for Supercapacitors, Dielectric Capacitors and Batteries”, Journal of Physics: Condensed Matter, 2019,31, 233001. [10.1088/1361-648X/ab0d77]

45.   Jonathan Metzman, Assad U. Khan, Brendan Magil, Randy Heflin,* Guoliang Liu,*  “Critical role of polystyrene layer on plasmonic silver nanoplates in organic photovoltaics”, ACS Applied Energy Materials, 2019, 2(4), 2475–2485 . DOI: 10.1021/acsaem.8b01860.

Synopsis: PS-functionalized AgNPs boost the power conversion efficiency (PCE) of organic photovoltaics (OPV), and un-functionalized AgNPs deteriorate the PCE of OPVs.  

44.  Dong Guo, Assad U. Khan, Tianyu Liu, Zhengping Zhou, Guoliang Liu,* “Sub-10 nm domains in high-performance polyetherimides”, Polymer Chemistry, 2019, 10, 379-385.  DOI: 10.1039/C8PY01460D.

Synopsis:  We present the synthesis and self-assembly of polystyrene-b-polyetherimide-b-polystyrene (PS-b-PEI-b-PS) triblock copolymers with ultra-low molecular weights. After condensation with PS oligomers, the ultra-low-molecular-weight PEI-based triblock copolymers form disordered nanostructures with domain sizes less than 10 nm. 

2018

43.  Quanyou Feng, Yang Lei, Yongliang Zhong, Dong Guo, Guoliang Liu, Linghai Xie, Wei Huang, Rong Tong,* “Stereoselective Photoredox Ring-Opening Polymerization of o-Carboxyanhydrides”, Nature Communications, 2018, 9, 1559. [DOI: 10.1038/s41467-018-03879-5]

42. Ke Cao, Zhengping Zhou, Guoliang Liu*, “Melt-Processable Telechelic Poly(ether imide)s End-Capped with Zinc Sulfonate Salts”, Polymer Chemistry, 2018, 9, 5660-5670. [DOI: 10.1039/C8PY01307A.] 

Synopsis:  Charged telechelic poly(ether imide)s (PEIs) terminated with  zinc sulfonates possess significantly better mechanical and rheological properties than other metal sulfonated poly(ether imide)s and nonsulfonated ones. PEI-SAA-Zn exhibited a pivot temperature at ~301−324 ˚C depending on the molecular weight. The complex viscosity decreased slowly below the pivot temperature and fast above the pivot temperature.

41. Yichen Guo, Assad U. Khan, Ke Cao, Guoliang Liu*, “Janus Plasmonic Silver Nano-Platelets for Interface Stabilization”, ACS Applied Nano Materials, 2018, 1(10), 5377–5381. [DOI: 10.1021/acsanm.8b01141].

Synopsis: Janus silver nano-platelets (J-AgNPs) with two chemically distinct surfaces are fabricated via electrostatic adsorption. The approach avoids corrosive chemicals and elevated temperatures that degrade the AgNPs. The J-AgNPs show great potential to stabilize emulsions and form layered nanostructures at the interfaces. 

40. Tianyu Liu, Tianyi Kou, Daniel Bulmahn, Carlos Ortuno-Quintana, Guoliang Liu, Jennifer Q. Lu, Yat Li, “Tuning the Electrochemical Properties of Nitrogen- Doped Carbon Aerogels in A Blend of Ammonia/Nitrogen Gases”, ACS Applied Energy Materials, 2018, 1(9), 5043–5053. [DOI: 10.1021/acsaem.8b01055]

39. David Cyprian Hicks, Zhengping Zhou, Guoliang Liu, Carolina Tallon*, “Aligned Continuous Cylindrical Pores Derived from Electrospun Polymer Fibers in Titanium Diboride”, International Journal of Applied Ceramic Technology, 2018, DOI: 10.1111/ijac.13122.

38. (Invited) Ke Cao, Mingxuan Zhang, Guoliang Liu,* “The Effect of End Group and Molecular Weight on the Yellowness of Polyetherimide”, Macromolecular Rapid Communications, 2018, 1800045. [DOI: 10.1002/marc.201800045]

Synopsis: The yellowness of polyetherimide (PEI) with electron-withdrawing end groups increases gradually with molecular weight. In contrast, the yellowness of PEIs with electron-donating end groups shows a valley-shape change with molecular weight.

37. Zhengping Zhou, Ke Cao, Xi Chen, Mai Nguyen, Samantha J. Talley, Robert B. Moore, Stephen Martin, Guoliang Liu,* "Preferred domain orientation in block copolymer fibers after solvent annealing", Molecular Systems Design & Engineering, 2018, 3, 357-363 . [DOI: 10.1039/C7ME00122C

Synopsis: Via solvent annealing, PMMA-b-PS nanofibers form long-range ordered nanostructures with a preferred domain orientation that is perpendicular to the fiber axis. The solvent annealing represents a powerful new strategy for controlling the block copolymer nanostructures in fibers.

2017

36. (Invited) Assad U. Khan, Zhengping Zhou, Joseph Krause,‡ Guoliang Liu,* “Poly(vinylpyrrolidone)-free Multi-step Synthesis of Silver Nanoplates with Plasmon Resonance in the Near Infrared Range”, Small, 2017, 1701715. [DOI: 10.1002/smll.201701715] (‡undergraduate)

Synopsis: PVP-free multi-step growth is used to synthesize high-aspect-ratio Ag nanoplates with plasmon resonance in the NIR region. Citrate-capped Ag spherical seeds, instead of the PVP-capped ones, are used to expedite the synthesis and avoid any polymer coating around the Ag nanoplates.

35.    Alexander P. Haring,‡ Assad Khan,‡ Guoliang Liu,* Blake N. Johnson,* "3D Printed Functionally Graded Plasmonic Constructs", Advanced Optical Materials, 2017, 1700367. [DOI: 10.1002/adom.201700367] (‡ equal contribution)

Synopsis: Plasmonic Ag nanoplates are integrated with polymers and 3D-printed into plasmonically active functional structures. The inks of polymers and Ag nanoplates represent as a new class of materials for the next-generation plasmonic devices.

Synopsis: Plasmonic Ag nanoplates are integrated with polymers and 3D-printed into plasmonically active functional structures. The inks of polymers and Ag nanoplates represent as a new class of materials for the next-generation plasmonic devices.

34.    Assad U. Khan, Clayton Scruggs, David Hicks,‡ Guoliang Liu,* “Two-dimensional plasmonic nanoparticles as sensors to probe polymer brush formation”, Analytical Chemistry, 2017, 89 (14), 7541-7548. [DOI: 10.1021/acs.analchem.7b01361] (‡undergraduate)

Synopsis: We for the first time introduce plasmonic nanoparticles as simple yet delicate nanoscale sensors to probe the polymer brush formation and unveil the underlying mechanism. The study has confirmed the three-regime kinetics and revealed the cause of “latent regime” and what happens in the “latent regime”.

33.   Ke Cao, Guoliang Liu,* “Low-molecular-weight, high-mechanical-strength, and solution-processable telechelic polyetherimide end-capped with ureido-pyrimidinone", Macromolecules, 2017, 50 (5), 2016–2023. [DOI: 10.1021/acs.macromol.7b00156]

Synopsis: After attaching quadruple hydrogen-bonding UPy end groups, polyetherimides (PEI) with a Mw as low as 8 kDa exhibited outstanding mechanical strength (GPa level) comparable to high-molecular-weight state-of-the-art commercial PEIs. The UPy end group was thermally stable up to 240 °C.

32.   Zhengping Zhou, Guoliang Liu,* “Controlling the Pore Size of Mesoporous Carbon Thin Films through Thermal and Solvent Annealing”, Small, 2017, 1603107. [DOI: 10.1002/smll.201603107]

Synopsis: Surprisingly, we found that the pore size and center-to-center spacing of mesoporous carbon thin films from PAN-b-PMMA increased significantly with annealing temperature, which is different from most block copolymers. The work provides a simple strategy to control the pore size of mesoporous carbon thin films by tuning the processing conditions instead of synthesizing block copolymers of various molecular weights and compositions.

31.   Guoliang Liu,* Paul F. Nealey, “Improved Block Copolymer Domain Dispersity on Chemical Patterns via Homopolymer-Blending and Molecular Transfer Printing”, Polymer, 2017, 116, 99-104. [DOI: 10.1016/j.polymer.2017.03.049]

30.   Resham J. Banga, Sai Archana Krovi, Suguna P. Narayan, Anthony J. Sprangers, Guoliang Liu, Chad A. Mirkin, SonBinh T. Nguyen,* “Drug-loaded Polymeric Spherical Nucleic Acids: Enhancing Colloidal Stability and Cellular Uptake of Polymeric Nanoparticles through DNA Surface-functionalization”, Biomacromolecules, 2017, 18 (2), 483–489. [DOI: 10.1021/acs.biomac.6b01563].

2016

29.   Assad Khan, Shuqi Zhao,‡ Guoliang Liu,* “Key Parameter Controlling the Sensitivity of Plasmonic Metal Nanoparticles: Aspect Ratio”, Journal of Physical Chemistry C, 2016, 120 (34), 19353–19364. [DOI: 10.1021/acs.jpcc.6b06519](‡undergraduate)

Synopsis: After measuring and analyzing the sensitivities of >74 types of nanoparticles, we found that the aspect ratio (R) is the key parameter that controls the nanoparticle sensitivity (S) following an empirical equation, S = 46.87 R + 109.37. Other parameters including shape, size, composition, and cross-sectional area have little effect on sensitivity.

2015

28.   Guoliang Liu, Chuan Zhang, Jinsong Wu, Chad A. Mirkin, “Using Scanning-Probe Block Copolymer Lithography and Electron Microscopy To Track Shape Evolution in Multimetallic Nanoclusters”, ACS Nano, 2015, 9(12), 12137-12145. [download].

27.   Peng-Cheng Chen, Guoliang Liu, Yu Zhou, Keith A. Brown, Natalia Chernyak, James L. Hedrick, Shu He, Zhuang Xie, Qing-Yuan Lin, Vinayak P. Dravid, Chad A. Mirkin, “Tip-directed synthesis of multi-metallic nanoparticles”, Journal of the American Chemical Society, 2015, 137 (28), 9167–9173. [download]

2014

26.   Zhichang Liu, Guoliang Liu, Yilei Wu, Dennis Cao, Junling Sun, Severin T. Schneebeli, Majed S. Nassar, Chad A. Mirkin, J. Fraser Stoddart,* “Assembly of supramolecular nanotubes from molecular triangles and 1,2-dihalohydrocarbons”, Journal of the American Chemical Society, 2014, 136 (47), 16651–16660. [download]

2013

25.   G. L. Liu, K. L. Young, X. Liao, M. L. Personick, C. A. Mirkin, “Anisotropic nanoparticles as shape-directing catalysts for the chemical etching of silicon”, Journal of the American Chemical Society, 135(33), 12196-12199 (2013).[download]

24.   G. L. Liu, D. J. Eichelsdoerfer, B. Rasin, Y. Zhou, K. A. Brown, X. Liao, C. A. Mirkin, “Delineating the pathways for the site-directed synthesis of individual nanoparticles on surfaces”, Proceedings of the National Academy of Science, 110(3), 887-891 (2013).[download]

23.   G. L. Liu, Y. Zhou, R. Banga, Radha B., K. A. Brown, A. J. Chipre, S. T. Nguyen, C. A. Mirkin, “The role of viscosity on the polymer ink transport in dip-pen nanolithography”, Chemical Science, 4, 2093-2099 (2013). (Featured as Hot Article in Chemical Science) [download]

22.   X. Liao, K. A. Brown, A. L. Schumucker, G. Liu, S. He, W. Shim, C. A. Mirkin, “Desktop nanofabrication with massively multiplexed beam pen lithography”, Nature Communications, 4, 2103, (2013).

21.   Z. C. Liu, M. Frasconi, J. Y. Lei, Z. J. Brown, Z. X. Zhu, D. Cao, J. Iehl, G. Liu, A. C. Fahrenbach, Y. Y. Botros, O. K. Farha, J. T. Hupp, C. A. Mirkin, J. F. Stoddart, “Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin”, Nature Communications, 4, 1855, (2013).

20.   C. Zhang, R. J. Macfarlane, K. L. Young, J. C. H. Choi, L. Hao, E. Auyeung, G. Liu, X. Z. Zhou, C. A. Mirkin, “A general approach to DNA-programmable atom equivalents”, Nature Materials, 12(8), 741-746, (2013).

19.   K. A. Brown, D. J. Eichelsdoerfer, W. Shim, B. Rasin, Radha B., X. Liao, A. L. Schmucker, G. Liu, C. A. Mirkin, “Cantilever-free Dot-Matrix Nanoprinting”, Proceedings of the National Academy of Science, 110(32), 12921-12924, (2013).

18.   Radha B., G. L. Liu, D. J. Eichelsdoerfer, G. U. Kulkarni, C. A. Mirkin, “Layer-by-layer assembly of a metallomesogen by dip-pen nanolithography”, ACS Nano, 7(3), 2602-2609 (2013).

2012

17.   K. L. Young, A. W. Scott, L. L. Hao, S. E. Mirkin, G. L. Liu, C. A. Mirkin, “Hollow spherical nucleic acids for intracellular gene regulation based upon biocompatible silica shells”, Nano Letters, 12(7), 3867-3871 (2012).    

16.   G. L. Liu, A. Ramirez-Hernandez, H. Yoshida, K. Nygård, D. K. Satapathy, O. Bunk, J. J. de Pablo, P. F. Nealey, “Morphology of Lamellae-forming Block Copolymer Films between Two Orthogonal Chemically Nanopatterned Striped Surfaces”, Physical Review Letters, 108, 065502 (2012).

15.   G. L. Liu, F. A. Detcheverry, A. Ramirez-Hernandez, H. Yoshida, Y. Tada, J. J. de Pablo, P. F. Nealey, “Non-bulk complex structures in thin films of symmetric block copolymers on chemically nanopatterned surfaces”, Macromolecules, 45(9) 3986-3992 (2012).

14.   A. Ramirez-Hernandez,* G. L. Liu,* P. F. Nealey, J. J. de Pablo, “Symmetric diblock copolymers confined by two nanopatterned surfaces”, Macromolecules, 45(5) 2588-2596 (2012).

13.   S. X. Ji, U. Nagpal, G. L. Liu, S. P. Delcambre, M. Muller, J. J. de Pablo, P. F. Nealey, “Directed assembly of non-equilibrium ABA triblock copolymer morphologies on nanopatterned substrates”, ACS Nano, 6(6), 5440-5448 (2012).

2011

12.   G. L. Liu, P. F. Nealey, R. Ruiz, E. Dobisz, K. C. Patel, T. R. Albrecht, “Fabrication of chevron patterns for patterned media with block copolymer directed assembly”, Journal of Vacuum Science & Technology B, 29(6), 06F204 (2011).

2010

11.   S. X. Ji, C. C. Liu, G. L. Liu, P. F. Nealey, “Molecular transfer printing using block copolymers”, ACS Nano, 4(2), 599-609 (2010).

10.   F. A. Detcheverry,* G. L. Liu,* P. F. Nealey and J. J. de Pablo, “Interpolation in the directed assembly of block copolymers on nanopatterned substrates: simulation and experiments”, Macromolecules, 43(7) 3446-3454 (2010).

9.    G. L. Liu, C. S. Thomas, G. S. W. Craig, P. F. Nealey, “Integration of density multiplication in the formation of device-oriented structures by directed assembly of block copolymer-homopolymer blends”, Advanced Functional Materials, 20(8), 1251-1257 (2010).

8.    G. L. Liu, H. M. Kang, G. S. W. Craig, F. A. Detcheverry, J. J. de Pablo, P. F. Nealey, Y. Tada, H. Yoshida, “Cross-sectional imaging of block copolymer thin films on chemically patterned surfaces”, Journal of Photopolymer Science and Technology, 23(2), 149-154 (2010).

7.    G. L. Liu, S. Delcambre, K. Stuen, G. Craig, J. de Pablo, P. F. Nealey, “Mechanism and dynamics of block copolymer directed assembly with density multiplication on chemically patterned surfaces”, Journal of Vacuum Science & Technology B, 28(6), C6B13-C6B19 (2010).

2009

6.    G. L. Liu, S. X. Ji, K. O. Stuen, G. S. W. Craig, P. F. Nealey, F. J. Himpsel, “Modification of a polystyrene brush layer by insertion of poly(methyl methacrylate) molecules”, Journal of Vacuum Science & Technology B, 27(6), 3038-3042 (2009).

5.    G. L. Liu, M. P. Stoykovich, S. X. Ji, K. O. Stuen, G. S. W. Craig, P. F. Nealey, “Phase behavior and dimensional scaling of symmetric ternary blends in thin films”, Macromolecules, 42(8), 3063–3072 (2009).

4.    K. O. Stuen, C. S. Thomas, G. L. Liu, N. Ferrier, P. F. Nealey, “Dimensional scaling of cylinders in thin films of block copolymer-homopolymer ternary blends”, Macromolecules, 42(14), 5139–5145 (2009).

2008

3.    S. X. Ji, G. L. Liu, F. Zheng, G. S. W. Craig, F. J. Himpsel, P. F. Nealey, “Preparation of neutral wetting brushes for block copolymer films from homopolymer blends”, Advanced Materials, 20(16), 3054-3060 (2008).

2.    K. O. Stuen, C. C. Liu, A. M. Welander, G. L. Liu, J. J. de Pablo, P. F. Nealey, D. K. Satapathy, K. Nygård, O. Bunk, H. H. Solak, J. F. van der Veen, “In situ characterization of block copolymer ordering on chemically nanopatterned surfaces by time-resolved small angle x-ray scattering”, Journal of Vacuum Science & Technology B, 26(6), 2504-2508 (2008).

2007

1.   M. P. Stoykovich, H. M. Kang, K. Ch. Daoulas, G. L. Liu, C. C. Liu, J. J. de Pablo, M. Müller, P. F. Nealey, “Directed self-assembly of block copolymers for nanolithography: The fabrication of isolated features and essential integrated circuit geometries,” ACS Nano, 1(3), 168-175 (2007).