V. Morinelli, K.-H. Neeb, G. Ólafsson, Orthogonal pairs of Euler elements I. Classification, fundamental groups and twisted duality, arXiv:2508.10960 (2025)
The current article continues our project on representation theory, Euler elements, causal homogeneous spaces and Algebraic Quantum Field Theory (AQFT). We call a pair (h,k) of Euler elements orthogonal if $e^{\pi i \ad h} k = -k$. We show that, if (h,k) and (k,h) are orthogonal, then they generate a 3-dimensional simple subalgebra. We also classify orthogonal Euler pairs in simple Lie algebras and determine the fundamental groups of adjoint Euler elements in arbitrary finite-dimensional Lie algebras. Causal complements of wedge regions in spacetimes can be related to so-called twisted complements in the space of abstract Euler wedges, defined in purely group theoretic terms. We show that any pair of twisted complements can be connected by a chain of successive complements coming from 3-dimensional subalgebras.
R. Longo, V. Morinelli, K.-H. Rehren, Where Infinite Spin Particles Are Localizable,
Commun. in Math. Phys., Volume 345, Issue 2, pp. 587-614 (2016). https://doi.org/10.1007/s00220-015-2475-9.
V. Morinelli, Y. Tanimoto, M. Weiner, Conformal covariance and the split property,
Commun. Math. Phys. Volume 357, Issue 1, 379-406 (2018). https://doi.org/10.1007/s00220-017-2961-3.
V. Morinelli, The Bisognano-Wichmann property on nets of standard subspaces, some sufficient conditions,
Ann. Henri Poincaré, Volume 19, Issue 3, 937-958 (2018). https://doi.org/10.1007/s00023-017-0636-4
V. Morinelli, Y. Tanimoto, Scale and Möbius covariance in two-dimensional Haag-Kastler net,
Commun. in Math. Phys., Volume 371, Issue 2, 619–650 (2019), https://doi.org/10.1007/s00220-019-03410-x.
R. Longo, V. Morinelli, F. Preta, K.-H. Rehren, Split property for free finite helicity fields,
Ann. Henri Poincaré, Volume 20, Issue 8, 2555-2258 (2019). https://doi.org/10.1007/s00023-019-00820-4
W. Dybalski, V. Morinelli, Bisognano-Wichmann property for asymptotically complete massless QFT
Commun. in Math. Phys. 380, 1267–1294 (2020). https://doi.org/10.1007/s00220-020-03755-8
V. Morinelli, K.-H. Rehren, Spacelike deformations: Higher-spin fields from scalar fields,
Letters in Mathematical Physics, 110, 2019–2038 (2020) https://doi.org/10.1007/s11005-020-01294-w
V. Morinelli, and K.-H. Neeb, Covariant homogeneous nets of standard subspaces,
Commun. in Math. Phys., arXiv:2010.07128 (2021) https://doi.org/10.1007/s00220-021-04046-6
A. Stottmeister, V. Morinelli, G. Morsella, Y. Tanimoto, Scaling limits of lattice quantum fields by wavelets,
Commun. in Math. Phys. (2021), 387(1), pp. 299-360. https://doi.org/10.1007/s00220-021-04152-5
A .Stottmeister, V. Morinelli, G. Morsella, Y. Tanimoto, Operator-algebraic renormalization and wavelets
Phys. Rev. Lett 127 (23), 230601, 6 pages, (2021). https://link.aps.org/doi/10.1103/PhysRevLett.127.230601
V. Morinelli, Y. Tanimoto, B. Wegener, Modular operator for null plane algebras in free fields,
Commun. in Math. Phys. (2022). https://doi.org/10.1007/s00220-022-04432-8
V. Morinelli, K.-H. Neeb, "A family of non-modular covariant AQFTs",
Analysis and Mathematical Physics 12, 124 (2022). https://doi.org/10.1007/s13324-022-00727-0
V. Morinelli, K.-H. Neeb, G. Olafsson, From Euler elements and 3-gradings to non-compactly causal symmetric spaces,
Journal of Lie theory, 33, No. 1, 377–432 (2023).
https://arxiv.org/abs/2207.14034
V. Morinelli, K.-H. Neeb, G. Olafsson, Modular geodesics and wedge domains in non-compactly causal symmetric spaces,
Annals of Global Analysis and Geometry, Volume 65, article number 9, (2024)
https://doi.org/10.1007/s10455-023-09937-6
R. Longo, V. Morinelli, "An entropy bound due to symmetries",
Reviews in Mathematical Physics, (2024) Link arXiv:2401.02345
V. Morinelli, K.-H. Neeb, "From local nets to Euler elements",
Advances in Mathematics, Volume 458, Part A, (2024) https://doi.org/10.1016/j.aim.2024.109960
V. Morinelli, An algebraic condition for the Bisognano-Wichmann Property,
Proceedings of the 14th Marcel Grossmann Meeting - MG14, Rome pp. 3849-3854 (2017) https://doi.org/10.1142/9789813226609_0509.
V. Morinelli, "Standard subspaces in Representation Theory",
Mini-Workshop: Standard Subspaces in Quantum Field, Report No. 50/2023, DOI: 10.4171/OWR/2023/50
report on the joint works with K.-H. Neeb (FAU Erlangen-Nürnberg) and G. Ólafsson (Louisiana State University)