Publications

Articles*:

* Users are encouraged to download final versions of the listed articles from the corresponding publisher websites via DOI and to use the self-archived pdfs only in the case when they do not have such an opportunity.

2012

“Plasmon polariton deceleration in graphene structures”,

J. Nanophoton. 6, 061719 (2012). http://dx.doi.org/10.1117/1.JNP.6.061719, [pdf]

Copyright 2012 Society of Photo Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, or modification of the contents of the publication are prohibited.

2014

«Графеновые наноленты с зигзагообразно модифицированными краями: структура и электронные свойства»,

ФТТ, T.56, №10, 2066 (2014). http://journals.ioffe.ru/articles/40939, [pdf]

“Edge-modified zigzag-shaped graphene nanoribbons: Structure and electronic properties”,

Phys. Solid State 56, 2135 (2014). [pdf]

The final publication is available at Springer via http://dx.doi.org/10.1134/S106378341410028X.

2015

“Band gaps in jagged and straight graphene nanoribbons tunable by an external electric field”,

J. Phys.: Condens. Matter 27, 145305 (2015). http://dx.doi.org/10.1088/0953-8984/27/14/145305, [pdf]

2016

«Зигзагообразные сверхрешетки на основе графеновых нанолент: структура и электронные свойства»,

Известия ВУЗов. Физика, Т. 59, №5, 27 (2016). ссылка, [pdf]

“Electro-absorption of silicene and bilayer graphene quantum dots”,

J. Appl. Phys. 120, 014304 (2016). http://dx.doi.org/10.1063/1.4955222, [pdf]

“Zigzag-Shaped Superlattices on the Basis of Graphene Nanoribbons: Structure and Electronic Properties”,

Russ. Phys. J. 59, 633 (2016). [pdf], [view-only version]

The final publication is available at Springer via http://dx.doi.org/10.1007/s11182-016-0816-6.

2017

“Optical selection rules of zigzag graphene nanoribbons",

Phys. Rev. B 95, 155438 (2017). http://doi.org/10.1103/PhysRevB.95.155438, [pdf]

“Electro-optical properties of phoshorene quantum dots”,

Phys. Rev. B 96, 085436 (2017). http://doi.org/10.1103/PhysRevB.96.085436, [pdf]

“Erratum: Optical selection rules of zigzag graphene nanoribbons [Phys. Rev. B 95 , 155438 (2017)]",

Phys. Rev. B 96, 199901(E) (2017). http://dx.doi.org//10.1103/PhysRevB.96.199901, [pdf] (Note: typographical errors are corrected in pdf shared in 8-th list item)

“Tuning terahertz transitions in a double-gated quantum ring”,

Phys. Rev. B 96, 235430 (2017). http://dx.doi.org/10.1103/PhysRevB.96.235430, [pdf]

2018

“Hidden correlation between absorption peaks in achiral carbon nanotubes and nanoribbons”,

J. Saudi Chem. Soc. 22, 985 (2018). https://doi.org/10.1016/j.jscs.2018.03.001 Open Access

“Multilayer phosphorene quantum dots in an electric field: Energy levels and optical absorption”,

J. Appl. Phys. 124, 124303 (2018). https://doi.org/10.1063/1.5048697, [pdf]

“Absorption in Finite-Length Chevron-Type Graphene Nanoribbons”,

Semiconductors 52, 1890 (2018). https://doi.org/10.1134/S1063782618140269, [view-only version]

2019

“Phosphorene quantum dot electronic properties and gas sensing”,

Physica E 107, 105 (2019). https://doi.org/10.1016/j.physe.2018.11.012, [pdf]

“Stability and electronic properties of edge functionalized silicene quantum dots: A first principles study”,

Physica E 108, 339 (2019). https://doi.org/10.1016/j.physe.2018.07.022, [pdf]

“Strong light-matter coupling in carbon nanotubes as a route to exciton brightening”,

ACS Photonics 6, 904 (2019). http://dx.doi.org/10.1021/acsphotonics.8b01543, [pdf]

“Edge functionalization of finite graphene nanoribbon superlattices”,

Superlattices Microstruct. 129, 54 (2019). https://doi.org/10.1016/j.spmi.2019.03.008, [pdf]

“Interband transitions in narrow-gap carbon nanotubes and graphene nanoribbons”,

J. Appl. Phys. 125, 151607 (2019). [pdf] Editorial Pick

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Appl. Phys. 125, 151607 (2019) and may be found at https://doi.org/10.1063/1.5080009.

“Ab initio study of absorption resonance correlations between nanotubes and nanoribbons of graphene and hexagonal boron nitride”,

Semiconductors 53, 1929 (2019). https://doi.org/10.1134/S1063782619140161, [pdf], [view-only version]

This a preprint of the Work accepted for publication in Semiconductors ©, copyright (2019), Pleiades Publishing, Ltd.

2020

“2N+4-rule and an atlas of bulk optical resonances of zigzag graphene nanoribbons”,

Nat. Commun. 11, 82 (2020). https://doi.org/10.1038/s41467-019-13728-8 Open Access

“Interaction of hydrated metals with chemically modified hexagonal boron nitride quantum dots: wastewater treatment and water splitting”,

Phys. Chem. Chem. Phys. 22, 2566 (2020). https://doi.org/10.1039/C9CP06823F, [pdf]

“Исследование гофрированных нанотрубок нового типа, вырезанных из бислойного графена с углом Муара Θ = 27.8°”,

Письма в ЖЭТФ 111(7), 469 (2020). https://doi.org/10.31857/S0370274X20070085, [pdf], Editorial Pick

“Study of a New Type of Crimped-Shape Nanotubes Cut from Bilayer Graphene with the Moiré Angle Θ = 27.8°”,

JETP Lett. 111(7), 397 (2020). [pdf], [view-only version]

This is a post-peer-review, pre-copyedit version of an article published in JETP Letters.

The final authenticated version is available online at: https://doi.org/10.1134/S0021364020070048

2021

“Electronic and adsorption properties of extended chevron and cove-edged graphene nanoribbons”,

Physica E 126, 114438 (2021). https://doi.org/10.1016/j.physe.2020.114438, [pdf]

“Tunable electro-optical properties of doped chiral graphene nanoribbons”,

Chem. Phys. 544, 111116 (2021). https://doi.org/10.1016/j.chemphys.2021.111116, [pdf]

“Exceptional points in oligomer chains”, 

Commun. Phys. 4, 254 (2021).  https://doi.org/10.1038/s42005-021-00757-3 Open Access

2022

Anomalous magnetic and transport properties of laterally connected graphene quantum dots”,

J. Mater. Sci. 57, 14356 (2022). https://doi.org/10.1007/s10853-022-07524-x, [pdf, 1 2 months embargo]

Chemically modified covalent organic frameworks for a healthy and sustainable environment: First-principles study”,

Chemosphere 308, 136581 (2022). https://doi.org/10.1016/j.chemosphere.2022.136581, [pdf]

 “Tunable sensing and transport properties of doped hexagonal boron nitride quantum dots for efficient gas sensors”,

Crystals 12, 1684 (2022).  https://doi.org/10.3390/cryst12111684 Open Access

“Momentum alignment and the optical valley Hall effect in low-dimensional Dirac materials”, 

JETP 135, 513 (2022)  https://doi.org/10.1134/S1063776122100107, [pdf], [view-only version]

2023

“Nanoporous graphene quantum dots constructed from nanoribbon superlattices with controllable pore morphology and size for wastewater treatment”,

Surf. Interfaces 40, 103109 (2023). https://doi.org/10.1016/j.surfin.2023.103109, [pdf_submitted]

“Nanoporous triangulene-based frameworks for the separation of petroleum hydrocarbons: Electronic, magnetic, optical, and adsorption properties”, 

ACS Appl. Nano Mater. 6, 15128 (2023).  https://doi.org/10.1021/acsanm.3c02689, [pdf]

2024

“Exploring the potential of chemically modified graphyne nanodots as an efficient adsorbent and sensitive detector of environmental contaminants: A first principles study”,

J. Fluoresc. 34, 945 (2024). https://doi.org/10.1007/s10895-023-03334-9, [pdf], [view-only-version]  

“Enhanced reactivity and selective adsorption: Unveiling the potential of metal-decorated graphene membranes for biosensing”,

Mater. Sci. Eng. B 303, 117327 (2024). https://doi.org/10.1016/j.mseb.2024.117327 [pdf], [50 days free link

“Ultraviolet π-Plasmon Contribution to the Transverse Optical Response of Doped Single-Walled Carbon Nanotubes”, 

Phys. Rev. B 109(16), 165409 (2024). https://doi.org/10.1103/PhysRevB.109.165409  [pdf]


Book chapters:

2013

The final publication is available at Springer via http://dx.doi.org/10.1007/978-1-4614-7675-7_9.

2019

The final publication is available at Springer via https://doi.org/10.1007/978-94-024-1687-9_11

Proceedings and others: