We recently obtained a five million-year record of climate change from the Atlantic Ocean off the coast of Portugal, and many of the deeper core sections making up this record were obtained by rotary drilling. The rotation of the outside of the sediment core (a pillar of clay about 7 cm in diameter, hundreds of meters long but cut into 1.5 m lengths) potentially affects the time-resolution of the climate record inside the deeper parts of the core.
In this project, we will be using clay "trimmed" from the outside of the core sections to try to identify the extent of the disruption in the timing of the record that could be caused by the drilling technique. In addition, we will use some of the discarded "trimmed" clay to search for micrometeorites that may have fallen into the North Atlantic over the thousands of years that the clays in the cores were accumulating. We will use magnets to try to fish out micrometeorites from the sediments, and look for them under the microscope; this may or may not locate some micrometeorites, but will be an interesting side project, and we are sure to see some tiny fossils from the North Atlantic!
当研究室では、堆積コア(直径約7 cm、数百メートル長の粘土の柱を1.5 m長さに切断されたもの)に残されている気候変動の記録の研究を行っています。最近、ポルトガル沖の大西洋から500万年分の記録を含む堆積コアを手に入れることに成功しました。しかし、これらのコアを採取する際に使われた回転ドリル方は、コアの時間分解能を乱す(下げる)可能性があります。このプロジェクトでは、コアセクションの外側から採取された粘土を使用して、回転ドリルが引き起こす記録への混乱の程度を特定します。さらに、数千年の間北大西洋の海底に蓄積されていった微小隕石や化石を顕微鏡を使って粘土の一部から探しだしていきます。
Researchers at the Whittle Laboratory work to improve turbomachinery, a class of machines that include wind turbines, jet engines and even hairdryers, which spin and transfer energy to and from fluids. In this project you will learn how “compressors” work, why they are so important in jet engines, and how engineers make them more efficient, quieter and safer. Everyone will use computational fluid dynamics (CFD) to design their own compressor airfoils and we will 3D print and test the new designs using a wind tunnel. We’ll also work together to understand the computational and experimental results and help the students to pull together a presentation of their work.
ウィットル研究所では、風力タービンやジェットエンジンなどを含むターボ機械類を改善するための研究に取り組んでいます。このプロジェクトでは、「コンプレッサー」(圧縮機)がどのように機能し、ジェットエンジンの中でどのような重要な役割を果たしているかを学んでいきます。また、技術者はどのように効率的かつ静かで安全な圧縮機を開発しているかも探っていきます。皆さんには圧縮機の一部である空気翼を実際に作っていきます。まずは計算流体力学(CFD)を用いて新しい空気翼を設計していきます。その上、3D プリンティング技術を使って空気翼を製造し、風洞(wind tunnel)の中で性能を測定する実験を行います。
In this project, students will explore the impact of prenatal nutrition and material obesity on fetal brain development by studying the brains of mice as model systems.
Students will first learn how tissue slices of mice brain are prepared using specialized instruments called microtomes. Following this, participants will progress to carefully mount the brain sections onto slides, ensuring they are ready for examination under a microscope for immunofluorescence imaging. The practical learnings will culminate in a discussion about the complexities of obesity, led by Prof. Giles Yeo.
Through these experiments, students will deepen their understanding of the intricate relationship between nutrition and brain growth. In addition, students will gain valuable hands-on experience in essential skills for conducting research in the field of neuroscience.
このプロジェクトでは、ネズミの脳を用いて、妊娠母体の栄養と肥満がどのように胎児の脳の発達に影響するかを探ります。
まず、生徒達はマイクロトームという特殊な機器を使用してネズミの組織切片の作製方法を学びます。その後、脳の断片を顕微鏡のスライドガラスに取り付け、免疫蛍光染色イメージングを行います。実践学習は、Giles Yeo教授の肥満の複雑さについての講演で締めくくられます。
これらの実験を通じて、生徒達は栄養と脳の成長の複雑な関係についての理解を深めることができます。また、神経科学の研究に必要な実験技術を実践的に経験することができます。
This group will look at the risks and benefits of the use of nuclear technology in energy production, medicine and the environment.
There will be videos to watch, games to play, lectures to listen to, and chances for discussion and the exchange of views. On the Wednesday you will have the chance to make some direct measurements of natural sources of radiation, and to learn about how radiation can be used to produce energy, in medicine and to help us understand our past.
このプロジェクトでは、エネルギー生産、医療、環境における核技術の使用に伴う利益とリスクについて講義、ビデオ、ディスカッションやゲームを通して学びます。水曜日には、自然放射線源の実践測定を行います。その後、過去の(核使用)を理解しつつ、今後放射線技術がどのようにエネルギー生産や医療に役立つかを学んでいきます。
Science communication is all about conveying cutting-edge science to broader audience in an accessible manner. This is a crucial aspect of scientific research, not only for ensuring that the public stay informed and inspired, but also for the government, funding bodies and companies to continue supporting exciting research and bringing new technologies into the world.
In this project, students will have the opportunity to create their own science communication piece, either in the form of an audio podcast or video. Activities will involve conducting interviews and collecting media (e.g. visuals) from other project groups and distilling everything into a narrative that can be appreciated by a more general audience. The project will be led by The Naked Scientists, an award-winning UK-based science-communication organisation, allowing students to get a first-hand experience into how science communication pieces are professionally created.