B8: De Moivre's Theorem
Home > A-Level Further Maths > Teaching Order Year 2 > 13: Core Pure - Complex Numbers: De Moivre's Theorem & Roots of Unity > B8: De Moivre's Theorem
Introducing De Moivre's Theorem
Introducing De Moivre's Theorem
B8-01 De Moivre’s Theorem: Introduction
B8-01 De Moivre’s Theorem: Introduction
B8-02 De Moivre’s Theorem: Using the Theorem Part 1
B8-02 De Moivre’s Theorem: Using the Theorem Part 1
B8-03 De Moivre’s Theorem: Using the Theorem Part 2
B8-03 De Moivre’s Theorem: Using the Theorem Part 2
Expansions of cos(nθ) and sin(nθ)
Expansions of cos(nθ) and sin(nθ)
B8-04 De Moivre’s Theorem: Expansions of cos(nθ) and sin(nθ)
B8-04 De Moivre’s Theorem: Expansions of cos(nθ) and sin(nθ)
B8-05 De Moivre’s Theorem: Express cos(2θ) in terms of cos(θ)
B8-05 De Moivre’s Theorem: Express cos(2θ) in terms of cos(θ)
B8-06 De Moivre’s Theorem: Express sin(2θ) in terms of cos(θ) and sin(θ)
B8-06 De Moivre’s Theorem: Express sin(2θ) in terms of cos(θ) and sin(θ)
B8-07 De Moivre’s Theorem: Express cos(3θ) in terms of cos(θ)
B8-07 De Moivre’s Theorem: Express cos(3θ) in terms of cos(θ)
B8-08 De Moivre’s Theorem: Express sin(3θ) in terms of sin(θ)
B8-08 De Moivre’s Theorem: Express sin(3θ) in terms of sin(θ)
B8-09 De Moivre’s Theorem: Express cos(4θ) in terms of cos(θ)
B8-09 De Moivre’s Theorem: Express cos(4θ) in terms of cos(θ)
B8-10 De Moivre’s Theorem: Express sin(4θ) in terms of sin(θ) & cos(θ)
B8-10 De Moivre’s Theorem: Express sin(4θ) in terms of sin(θ) & cos(θ)
B8-11 De Moivre’s Theorem: Using the Theorem Part 3
B8-11 De Moivre’s Theorem: Using the Theorem Part 3
B8-12 De Moivre’s Theorem: Using the Theorem Part 4
B8-12 De Moivre’s Theorem: Using the Theorem Part 4
B8-13 De Moivre’s Theorem: Using the Theorem Part 5
B8-13 De Moivre’s Theorem: Using the Theorem Part 5