Wind Energy

Graduate students and post-docs from my research group are identified by * and + signs, respectively.

[21] Kartal+, S., Basu, S., and Watson, S. J. (2023). "A decision tree-based measure-correlate-predict approach for peak wind gust estimation from a global reanalysis dataset", Wind Energy Science,  https://wes.copernicus.org/articles/8/1533/2023/

[20] Cheneka*, B., Watson, S. J., and Basu, S. (2023). "Quantifying the impacts of synoptic weather patterns on North Sea wind power production and ramp events under a changing climate", Energy and Climate Change, 10.1016/j.egycc.2023.100113.

[19] Li*, B., Basu, S., Watson, S. J. (2022). "Automated identification of "Dunkelflaute" events: A convolutional neural network-based autoencoder approach", Artificial Intelligence for the Earth Systems, in press. 

[18] Li*, B., Basu, S., Watson, S. J., and Russchenberg, H. W. J. (2021). "A brief climatology of Dunkelflaute events over and surrounding the North and Baltic sea areas", Energies, 14, 6508.

[17] Lu, N.-Y., Manuel, L., Hawbecker*, P. H., and Basu, S., and Manuel, L. (2021). "A simulation study on risks to wind turbine arrays from thunderstorm downbursts in different atmospheric stability conditions", Energies, 14, 5407.

[16] Cheneka*, B. R., Watson, S. J., Basu, S. (2021). "Associating synoptic-scale weather patterns with aggregated offshore wind power production and ramps", Energies, 14, 3903.

 [15] Li*, B., Basu, S., Watson, S. J., and Russchenberg, H. W. J.  (2021). "Mesoscale modeling of a `Dunkelflaute' event", Wind Energy, 24, 5-23.

Basu, S., Watson, S. J., Lacoa Arends*, E., and Cheneka*, B. R. (2020). "Day-ahead wind power predictions at regional scales: Post-processing operational weather forecasts with a hybrid neural network", 17th International Conference on the European Energy Market (EEM20), IEEE, doi: 10.1109/EEM49802.2020.9221979.

Lacoa Arends*, E., Watson, S. J., Basu, S., and Cheneka*, B. R. (2020). "Probabilistic wind power forecasting combining deep learning architectures", 17th International Conference on the European Energy Market (EEM20), IEEE, doi: 10.1109/EEM49802.2020.9221929.

Li*, B., Basu, S., Watson, S. J., and Russchenberg, H. W. J. (2020). "Quantifying the predictability of a `Dunkelflaute' event by utilizing a mesoscale model", Journal of Physics: Conference Series, 1618, 062042, doi: 10.1088/1742-6596/1618/6/062042.

Cheneka*, B. R., Watson, S. J., and Basu, S. (2020). "The impact of weather patterns on offshore wind power production", Journal of Physics: Conference Series, 1618, 062032, doi: 10.1088/1742-6596/1618/6/062032.

[14] Cheneka*, B. R., Watson, S. J., and Basu, S. (2020). "A simple methodology to detect and quantify wind power ramps", Wind Energy Science, 5, 1731-1741. 

[13] Durán, P., Basu, S., Meißner, C., and Adaramola, M. S. (2019). "Automated classification of simulated wind field patterns from multi-physics ensemble forecasts". Wind Energy, doi: 10.1002/we.2462.

[12] Lu, N.-Y., Hawbecker*, P. H., Basu, S., and Manuel, L. (2019). "On wind turbine loads during thunderstorm downbursts in contrasting atmospheric stability regimes". Energies, 12(14), 2773 (https://doi.org/10.3390/en12142773)

[11] Lu, N.-Y., Basu, S., and Manuel, L. (2019). "On wind turbine loads during evening transition period". Wind Energy, online first. (available at: https://onlinelibrary.wiley.com/doi/10.1002/we.2355)

[10] Basu, S. (2018). "A simple recipe for estimating atmospheric stability solely based on surface‐layer wind speed profile", Wind Energy, 21(10), 937-941. (open access) 

[9] DeMarco*, A, Basu, S. (2018). "On the tails of the wind ramp distributions", Wind Energy, 21(10), 892-905. (open access)

[8] Hawbecker*, P., Basu, S., and Manuel, L. (2018). "Investigating the impact of atmospheric stability on thunderstorm outflow winds and turbulence", Wind Energy Science, 3, 203-219. (open access)

[7] Hawbecker*, P., Basu, S., and Manuel, L. (2017). "Realistic simulations of the July 1, 2011 severe wind event over the Buffalo Ridge Wind Farm", Wind Energy, 20(11), 1803-1822.

[6] Park, J., Manuel, L., and Basu, S. (2015). "Toward isolation of salient features in stable boundary layer wind fields that influence loads on wind turbines", Energies, 8(4), 2977-3012.

Wang*, Y., Basu, S., and Manuel, L. (2015). "Coupled mesoscale-large-eddy modeling of realistic stable boundary layer turbulence", (unpublished work).

Nunalee*, C. G., and Basu, S. (2014). "Mesoscale modeling of low-level jets over the North Sea", WindEnergy - Impact of Turbulence: Proceedings of the Euromech Colloquium, edited by Michael Hölling, Joachim Pienke and Stefan Ivanell, Springer, pages: 197-202.

[5] Nunalee*, C. G., and Basu, S. (2013). "Mesoscale modeling of coastal low-level jets: Implications for offshore wind resource estimation", Wind Energy, 17(8), 1199-1216.

[4] Park, J., Basu, S., and Manuel, L. (2013). "Large-eddy simulation of stable boundary layer turbulence and estimation of associated wind turbine loads", Wind Energy, 17(3), 359-384.

[3] Sim, C., Basu, S., and Manuel, L. (2012). "On space-time resolution of inflow representations for wind turbine loads analysis", Energies, 5(7), 2071-2092.

[2] Storm*, B. and Basu, S. (2010). "The WRF model forecast-derived low-level wind shear climatology over the United States Great Plains", Energies (invited paper), 3, 258-276.

[1] Storm*, B., Dudhia, J., Basu, S., Swift, A., and Giammanco, I. (2008). "Evaluation of the Weather Research and Forecasting (WRF) model on forecasting low-level jets: Implications for wind energy", Wind Energy. 12(1), 81-90.