Publications

1. Y. Peng et al., “1.28 Terabit-per-second all-silicon avalanche receiver,” in review, 2023.

2. Y. Peng et al., “All-Optical Reconfigurable Low-Threshold Nonlinear Activation Functions for High-Precision Neural Network,” in Frontiers in Optics + Laser Sciences Conference, Tacoma, WA, 2023.

3. Y. Yuan et al., “All-Silicon Microring Transceivers Enabling Single-Lane Throughput Exceeding 128 Gb/s,” in Frontiers in Optics + Laser Sciences Conference, Tacoma, WA, 2023. 4. Z. Fang et al., “Non-Volatile Materials for Programmable Photonics,” APL Materials, vol. 11, no. 10, 2023

5. Y. Yuan et al., “A 1 Tbps DWDM Microring Modulator Silicon Chip Empowered by Two-Segment Z-Shape Junctions,” preprint (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3311530/v1]

6. Y. Yuan et al., “Mechanisms of enhanced sub-bandgap absorption in high-speed all-silicon avalanche photodiodes,” Photonics Research, vol. 11, no. 2, pp. 337–346, 2023.

7. Y. Yuan et al., “An O-Band All-Silicon Microring Avalanche Photodiode with> 38 GHz RF Bandwidth,” in 2023 IEEE Silicon Photonics Conference (SiPhotonics), IEEE, 2023, pp. 1–2.

8. Y. Yuan et al., “A 4\times 100 Gbps DWDM Receiver using All-Si Microring Avalanche Photodiodes,” in Optical Fiber Communication Conference, Optica Publishing Group, 2023, pp. W1A-5.

9. Y. Yuan et al., “A 7-bit Precision Linearized Mach-Zehnder Interferometer for High Accuracy Optical Neural Networks,” in 2023 Opto-Electronics and Communications Conference (OECC), IEEE, 2023, pp. 1–3.

10. Y. Yuan et al., “Low-phase quantization error Mach–Zehnder interferometers for high-precision optical neural network training,” APL Photonics, vol. 8, no. 4, 2023.

11. X. Xiao et al., “Wavelength-Parallel Photonic Tensor Core Based on Multi-FSR Microring Resonator Crossbar Array,” in Optical Fiber Communication Conference, Optica Publishing Group, 2023, pp. W3G-4.

12. B. Tossoun et al., “High-Speed and Energy-Efficient Non-Volatile Silicon Photonic Memory Based on Heterogeneously Integrated Memresonator,” arXiv preprint arXiv:2303.05644, 2023.

13. B. Tossoun et al., “Heterogeneously Integrated III–V on Silicon Photonics for Neuromorphic Computing,” in 2023 IEEE Photonics Society Summer Topicals Meeting Series (SUM), IEEE, 2023, pp. 1–2.

14. Y. Peng et al., “High-Speed All-Silicon Double Microring Avalanche Photodetectors,” in 2023 Opto-Electronics and Communications Conference (OECC), IEEE, 2023, pp. 1–4.

15. Y. Peng et al., “Demonstration of an Ultra-High-Responsivity All-Silicon Avalanche Photodetectors,” in 2023 Optical Fiber Communications Conference and Exhibition (OFC), IEEE, 2023, pp. 1–3.

16. Y. Peng et al., “All-silicon microring avalanche photodiodes with a> 65 A/W response,” Optics Letters, vol. 48, no. 5, pp. 1315–1318, 2023.

17. S. Cheung et al., “Co-integrated Non-Volatile Charge Trap Memory with III-V/Si Photonics,” in 2023 Opto-Electronics and Communications Conference (OECC), IEEE, 2023, pp. 1–2.

18. S. Cheung et al., “Non-Volatile Memristive III-V/Si Photonics,” in 2023 IEEE Silicon Photonics Conference (SiPhotonics), IEEE, 2023, pp. 1–2.

19. S. Cheung et al., “Energy-Efficient Photonic Memory Based on Electrically Programmable Embedded III-V/Si Memristors: Switches and Filters,” arXiv preprint arXiv:2307.00429, 2023.

20. S. Cheung et al., “Ultra-Power-Efficient Electrically Programmable Photonic Memory on a Heterogeneous III-V/Si Optical Computing Platform,” 2023.

21. S. Cheung et al., “Non-volatile heterogeneous III-V/Si photonics via optical charge-trap memory,” arXiv preprint arXiv:2305.17578, 2023.

22. Y. Yuan et al., “OSNR sensitivity analysis for Si-Ge avalanche photodiodes,” IEEE Photonics Technology Letters, vol. 34, no. 6, pp. 321–324, 2022.

23. Y. Yuan et al., “Analysis of Optical Stressed Si-Ge Avalanche Photodiodes,” in 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), IEEE, 2022, pp. 1–3.

24. Y. Yuan et al., “Development and modeling of Ge-free microring avalanche photodiode in optical communication band,” in Optical Fiber Communication Conference, Optica Publishing Group, 2022, pp. W3D-4.

25. R. G. B. Stanley Cheung Geza Kurczveil, Yingtao Hu, Mingye Fu, Yuan Yuan, Di Liang, “Ultra-power-efficient heterogeneous III–V/Si MOSCAP (de-)interleavers for DWDM optical links,” Photonics Research, vol. 10, no. 2, pp. A22–A34, 2022.

26. Y. Peng et al., “Analytical Modeling of Silicon Microring Photodetectors,” in 2022 IEEE Photonics Conference (IPC), IEEE, 2022, pp. 1–2.

27. Y. Peng et al., “Small-signal analysis of all-Si microring resonator photodiode,” Electronics, vol. 11, no. 2, p. 183, 2022.

28. D. Liang et al., “An energy-efficient and bandwidth-scalable DWDM heterogeneous silicon photonics integration platform,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 6, pp. 1–19, 2022.

29. D. Liang et al., “Advanced Integrated Photonics For DWDM Optical Interconnects,” in 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), IEEE, 2022, pp. 1–1.

30. S. Cheung et al., “Demonstration of a Heterogeneous III-V/Si DWDM Transmitter based on (De-) Interleaved Frequency Comb,” in 2022 Conference on Lasers and Electro-Optics (CLEO), IEEE, 2022, pp. 1–2.

31. S. Cheung et al., “Demonstration of a 17\times 25 Gb/s Heterogeneous III-V/Si DWDM Transmitter Based on (De-) Interleaved Quantum Dot Optical Frequency Combs,” Journal of Lightwave Technology, vol. 40, no. 19, pp. 6435–6443, 2022.

32. S. Cheung et al., “Heterogeneous III-V/Si Non-Volatile Optical Memory: A Mach-Zehnder Memristor,” in CLEO: Science and Innovations, Optica Publishing Group, 2022, pp. STu5G-6.

33. S. Cheung et al., “Heterogeneous III-V/Si (De-) Interleaver Filters with Non-Volatile Memristive Behavior,” in 2022 IEEE Photonics Conference (IPC), IEEE, 2022, pp. 1–2.

34. S. Cheung et al., “Ultra-power-efficient heterogeneous III–V/Si MOSCAP (de-) interleavers for DWDM optical links,” Photonics Research, vol. 10, no. 2, pp. A22–A34, 2022.

35. S. Cheung et al., “Comparison of Al2O3 and HfO2 MOSCAP III-V/Si Power Splitters and (De-) Interleavers for DWDM Optical Links,” in Optical Fiber Communication Conference, Optica Publishing Group, 2022, pp. M2E-5.

36. S. Cheung, M. R. T. Tan, W. Sorin, J. M. Abril, and S. Mathai, “Tunable laser.” Nov. 16, 2021.

37. B. Wang, W. Sorin, M. R. T. Tan, S. V. Mathai, and S. Cheung, “Intensity noise mitigation for vertical-cavity surface emitting lasers.” Apr. 20, 2021.

38. Y. Yuan et al., “A 4\times 100 Gb/s DWDM optical link with all-silicon microring transmitters and receivers,” in Asia Communications and Photonics Conference, Optica Publishing Group, 2021, pp. T2D-4.

39. R. G. B. Stanley Cheung Antoine Descos, James Pond, Karthik Srinivasan, Stephen Pan, Norman Chang, Di Liang, “Heterogeneous Lasers on Silicon Photonics System,” in DAC 2021, 2021.

40. S. Cheung, Y. Yuan, A. Descos, D. Liang, and R. G. Beausoleil, “On-Chip, Optical Injection-Locked III-V/Si Micro-Ring Lasers,” in 2021 Asia Communications and Photonics Conference (ACP), IEEE, 2021, pp. 1–3.

41. S. Cheung, G. Kurczveil, and R. G. B. Yingtao Hu MingYe Fu, M. Jobayer Hossain, Di Liang, “Ultra-Power Efficient Heterogeneous III-V/Si De-Interleavers for DWDM Optical Links,” in IEEE 17th International Conference on Group IV Photonics (GFP), IEEE, 2021, pp. 1–2.

42. B. Wang, W. V. Sorin, M. R. Tan, and S. Cheung, “Mode division multiplexing using vertical-cavity surface emitting lasers.” Oct. 06, 2020.

43. S. Cheung, M. Tan, S. Mathai, W. V. Sorin, and P. Rosenberg, “Hybrid coarse wavelength division multiplexing (CWDM) transceiver.” Aug. 25, 2020.

44. S. Cheung, M. R. T. Tan, W. V. Sorin, J. M. ABRIL, and S. Mathai, “Tunable laser.” Jan. 07, 2020.

45. D. Liang et al., “Integrated green DWDM photonics for next-gen high-performance computing,” in Optical Fiber Communication Conference, Optica Publishing Group, 2020, pp. Th1E-2.

46. S. Cho, S. S. Cheung, Y. H. Jung, S.-K. Kang, B.-G. Park, and others, “Ge-on-si photodetector with enhanced optical responsivity by advanced metallization geometry,” Journal of Semiconductor Technology and Science, vol. 20, no. 4, pp. 366–371, 2020.

47. S. Cheung and M. R. Tan, “Ultra-Low loss and fabrication tolerant silicon nitride (Si3N4)(de-) muxes for CWDM optical interconnects,” in 2020 Optical Fiber Communications Conference and Exhibition (OFC), IEEE, 2020, pp. 1–3.

48. S. S. Cheung and M. R. Tan, “Silicon nitride (si 3 n 4)(de-) multiplexers for 1-μm cwdm optical interconnects,” Journal of Lightwave Technology, vol. 38, no. 13, pp. 3404–3413, 2020.

49. J. Matres, W. V. Sorin, S. Cheung, S. V. Mathai, and M. R. T. Tan, “Polarization diverse distributed perturbation receivers.” Nov. 26, 2019.

50. S. Cheung, M. R. T. Tan, W. V. Sorin, J. M. ABRIL, and S. Mathai, “Tunable laser.” Oct. 08, 2019.

51. S. V. Mathai, S. Cheung, W. V. Sorin, and M. R. T. Tan, “Bottom emitting vertical-cavity surface-emitting lasers.” May 14, 2019.

52. B. Wang, W. V. Sorin, M. R. T. Tan, S. Mathai, and S. Cheung, “Orthogonally polarized VCSELs.” Jan. 08, 2019.

53. B. WANG, W. V. SORIN, M. R. T. TAN, S. MATHAI, S. CHEUNG, and others, “Orthogonally polarized vcsels,” 2019.

54. S. Cheung, “High-speed, directly-modulated widely tunable 1310 nm coupled cavity laser via multimode interference,” Journal of Lightwave Technology, vol. 37, no. 9, pp. 2133–2139, 2019.

55. B. Wang, W. Sorin, M. Tan, S. Mathai, and S. Cheung, “Orthoganolly polarized VCSELs.” Sep. 25, 2018.

56. S. CHEUNG, M. R. T. TAN, W. V. SORIN, J. MATRES ABRIL, S. MATHAI, and others, “Tunable Laser,” 2018.

57. P. Grani, R. Proietti, S. Cheung, and S. B. Yoo, “Flat-topology high-throughput compute node with AWGR-based optical-interconnects,” Journal of Lightwave Technology, vol. 34, no. 12, pp. 2959–2968, 2016.

58. S. Cheung, K. Shang, Y. Kawakita, and S. B. Yoo, “Efficient III-V/Si hybrid SOAs for optical interconnects,” in CLEO: Science and Innovations, Optica Publishing Group, 2015, pp. STu4F-4.

59. S. Cheung, Y. Kawakita, K. Shang, and S. B. Yoo, “Highly efficient chip-scale III-V/silicon hybrid optical amplifiers,” Optics Express, vol. 23, no. 17, pp. 22431–22443, 2015.

60. R. Yu, S. Cheung, Y. Li, K. Okamoto, R. Proietti, and S. Yoo, “A silicon photonic chip-scale AWGR switch for high performance computing systems,” in CLEO: Science and Innovations, Optica Publishing Group, 2014, pp. SM2G-7.

61. K. Shang, S. Cheung, B. Li, R. P. Scott, Y. Takamura, and S. Yoo, “On-chip optical isolators based on a ring resonator with bismuth-iron-garnet overcladding,” in CLEO: Science and Innovations, Optica Publishing Group, 2014, pp. SM1H-6.

62. S. Cheung, “Heterogeneous Integration of III-V Semiconductor Compounds on Silicon for Functional Photonic Circuits,” PhD Thesis, University of California, Davis, 2014.

63. R. Yu et al., “A scalable silicon photonic chip-scale optical switch for high performance computing systems,” Optics Express, vol. 21, no. 26, pp. 32655–32667, 2013.

64. S. S. Djordjevic et al., “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Optics Express, vol. 21, no. 12, pp. 13958–13968, 2013.

65. S. S. Djordjevic et al., “Athermal silicon ring modulators clad with titanium dioxide by RF magnetron sputtering,” in 2013 Optical Interconnects Conference, IEEE, 2013, pp. 56–57.

66. S. Cheung, T. Su, K. Okamoto, and S. Yoo, “Ultra-compact silicon photonic 512\times 512 25 GHz arrayed waveguide grating router,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, pp. 310–316, 2013.

67. S. Cheung, K. Shang, Y. Kawakita, and S. Yoo, “Design optimization of energy-efficient hydrophobic wafer-bonded III-V/Si semiconductor optical amplifiers,” in 2013 Optical Interconnects Conference, IEEE, 2013, pp. 108–109.

68. S. Cheung, Y. Kawakita, K. Shang, and S. B. Yoo, “Theory and design optimization of energy-efficient hydrophobic wafer-bonded III–V/Si hybrid semiconductor optical amplifiers,” Journal of lightwave technology, vol. 31, no. 24, pp. 4057–4066, 2013.

69. B. Guan et al., “Full-field technique for measuring the spectral evolution of reconfigurable photonic filters,” Optics Letters, vol. 37, no. 3, pp. 341–343, 2012.

70. S. Cho et al., “Room-temperature electroluminescence from germanium in an Al 0.3 Ga 0.7 As/Ge heterojunction light-emitting diode by Γ-valley transport,” Optics Express, vol. 20, no. 14, pp. 14921–14927, 2012.

71. S. Cheung et al., “Monolithically integrated 10-GHz ring colliding pulse mode-locked laser for on-chip coherent communications,” in CLEO: Science and Innovations, Optica Publishing Group, 2012, pp. CW1N-8.

72. S. Cheung, B. Guan, S. Djordjevic, K. Okamoto, and S. Yoo, “Low-loss and high contrast silicon-on-insulator (SOI) arrayed waveguide grating,” in 2012 Conference on Lasers and Electro-Optics (CLEO), IEEE, 2012, pp. 1–2.

73. F. M. Soares et al., “Monolithic InP 100-Channel $\backslashtimes $10-GHz Device for Optical Arbitrary Waveform

Generation,” IEEE Photonics Journal, vol. 3, no. 6, pp. 975–985, 2011.

74. S. Ibrahim et al., “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Optics express, vol. 19, no. 14, pp. 13245–13256, 2011.

75. B. Guan et al., “Dynamic sub-20 ns reconfiguration of a silicon CMOS photonic filter and filter shape measurement,” in CLEO: Science and Innovations, Optica Publishing Group, 2011, p. CThP2.

76. X. Zhou et al., “16-channel\times 100-GHz monolithically integrated O-CDMA transmitter with SPECTS encoder and seven 10-GHz mode-locked lasers,” in 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference, IEEE, 2010, pp. 1–3.

77. S. Ibrahim et al., “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” in Optical Fiber Communication Conference, Optica Publishing Group, 2010, p. OWJ5.

78. N. K. Fontaine et al., “Fully reconfigurable silicon CMOS photonic lattice filters,” in 36th European Conference and Exhibition on Optical Communication, IEEE, 2010, pp. 1–3.

79. S. Cheung et al., “Super-long cavity, monolithically integrated 1-GHz hybrid mode-locked InP laser for all-optical sampling,” in Photonics in Switching, Optica Publishing Group, 2010, p. PWD2.

80. S. Cheung et al., “1-GHz monolithically integrated hybrid mode-locked InP laser,” IEEE Photonics Technology Letters, vol. 22, no. 24, pp. 1793–1795, 2010.