Related publications from FNMR lab.
Large‐scale synthesis of CuS nanoparticles for photothermal material using high‐concentration Cu complex ion precursor, J. Am. Ceram. Soc., 2023, in-print
Related publications from FNMR lab.
One-step synthesis of black TiO2-x microspheres by USP process and their visible-light-driven photocatalytic activities, Ultrason. Sonochem. 2021, 74, 105557.
Adhesive resin composites with ceramic nanoparticles for enhanced light extraction efficiency of sandwiched LED device structure, Mater. Today Commun., 2020, 25, 101378.
Facile synthesis of zirconia nanoparticles using a salt-assisted ultrasonic spray pyrolysis combined with a citrate precursor method, J. Alloys Compd., 2019, 771, 821-826.
Related publications from FNMR lab.
Simple synthesis of black TiO2 nanofibers via calcination in inert atmosphere, Arch. Metall. Mater., 2022, 67, 1481-1486.
Visible light driven photocatalytic degradation enhanced by α/β phase heterojunctions on electrospun Bi2O3 nanofibers, J. Alloys Compd., 2019, 806, 1060-1067.
Electrospun CoFe2O4 nanofibers as high capacity anode materials for Li-ion batteries, J. Nanosci. Nanotechnol., 2017, 17, 7632-7635.
Synthesis, morphology control and electromagnetic wave absorption properties of electrospun FeCo alloy nanofibers, J. Nanosci. Nanotechnol., 2016, 16, 5190-5194.
Electrospun NiFe2O4 Nanofibers as High Capacity Anode Materials for Li-Ion Batteries, J. Nanosci. Nanotechnol., 2013, 13, 7138-7141.
Synthesis and characterization of polycrystalline Sr, Mg-doped LaGaO3 nanowires using electrospinning method, Curr. Appl. Phys., 2012, 12, 596-598.
Synthesis and characterization of TiO2 nanowires with controlled porosity and microstructure using electrospinning method, Curr. Appl. Phys., 2011, 11, S210-S214.
Synthesis and electrical property of indium tin oxide nanofibers using electrospinning method, J. Nanosci. Nanotechnol., 2007, 7, 3910-3913.
Related publications from FNMR lab.
Facile synthesis of hierarchical CuS microspheres with high visible-light-driven photocatalytic activity, J. Photochem. Photobiol. A: Chem., 2020, 401, 112782.
Microstructure-Controlled Synthesis of Nickel Oxide Nanowires by Thermal Oxidation of Nickel Nanowires, J. Nanosci. Nanotechnol., 2016, 17, 7632-7635.
Selective transformation of Cu Nws to Cu2S or CuS Nss and the roles of the Kirkendall effect and anion exchange reaction, Mater. Chem. Phys. 2016, 180, 104-113.
Synthesis of CuO nanotubes with controlled diameters by chemical transformation of cu nanowires, J. Nanosci. Nanotechnol., 2015, 15, 8166-8170.
Three-dimensional hierarchical Te–Si nanostructures, Nanoscale, 2014, 6, 11697-11702
Template-free synthesis of vertically oriented tellurium nanowires via a galvanic displacement reaction, Electrochim. Acta, 2013, 111, 200-205.
Transformation of metal nanowires into metal nanotubes by a sequential thermal process, Scr. Mater., 2013, 68, 463-466.
Synthesis of ultra-long hollow chalcogenide nanofibers, Chem. Commun. 2011, 47, 9107-9109.
Tunable synthesis of cuprous and cupric oxide nanotubes from electrodeposited copper nanowires, J. Nanosci. Nanotechnol., 2011, 11, 1455-1458.
Nanopeapods by galvanic displacement reaction, Angew. Chem. Int. Ed., 2010, 49, 7081-7085.