Peer-reviewed-publications

(CHRONOLOGICAL ORDER)

Asterisk [*] denotes publications with my advises; Double asterisk (⁑) marks the papers where Pal was senior/corresponding author. Student coauthors are also highlighted (underlined text). 

2024

[55] Lee, T.R., Pal, S., Leeper, R.D., Wilson, T., Diamond, H., Meyers, T.P., and Turner, D.D., 2024. On the Importance of Regime-Specific Evaluations for Numerical Weather Prediction Models as Demonstrated using the High Resolution Rapid Refresh (HRRR) Model. Weather and Forecasting, https://doi.org/10.1175/WAF-D-23-0177.1

2023

[54] Lee, T.R., Pal., S., Krishnan, P., Heuer, M., Hirth, B., Meyers, T.P., Kochendorfer, J., Saylor, R., Schroeder, J., 2023. On the efficacy of Monin-Obukhov and bulk Richardson surface- layer parameterizations over drylands, Journal of Applied Meteorology and Climatology, Accepted, in press. Link here 

[53] Wang, Q., Crowell, S., Pal., S., 2023. Atmospheric variations in column integrated CO2 on synoptic and seasonal time scale over the U.S., Accepted/In press,  Journal of Geophysical Research-Atmospheres.  Link here.

[52] Crosman, E., Ward, A.M., Bieda, S., Lindley, T., Gittinger, M., Pal, S., Vepuri, H., 2023. Engaging Undergraduate Students in Collaborative Field Research with the National Weather Service: The SCORCHER Study, Accepted/In press, Bulletin of American Meteorological Society, Link here


2022

[51] Hamel, M*., Pal, S., Hirth, B., 2022. Multi-variable turbulence characteristics of the daytime atmospheric boundary layer over an arid region using measurements from a 200-m tall tower. AGU journal Earth and Space Science, in review, Pre-Print available on ESSOAr; https://doi.org/10.1002/essoar.10512363.1

[50] Anand, M*., and Pal, S., 2022. Exploring Atmospheric Boundary Layer Depth Variability in Frontal Environments over an Arid Region, Boundary Layer Meteorology; Link here

[49] Walley, S.*, Pal, S., Campbell, J. F., Dobler, J., Bell, E., Weir, B., Feng, S., Baker, D., Erxleben,  W., Fan, T., Lauvaux, T., Lin, B., McGregor, D., Obland, M.D., O’Dell, C., and Davis, K.J., 2022. Airborne lidar measurements of XCO2 in synoptically active environment and associated comparisons with numerical simulations. Journal of Geophysical Research: Atmospheres, 127, e2021JD035664. Open Access Article Link here

[48] Clark, N.E*., Pal, S., and Lee, T.R., 2022. Empirical evidence for frontal modifications of atmospheric boundary layer depth variability over land, Journal of Applied Meteorology and Climatology, Open Access Article Link here

[47] Zhang, L., Davis, K.J., Schuh, A.E., Jacobson, A.R., Pal, S., Cui, Y., Baker, D., Crowell, S., Chevallier, F., Liu, J., Weir, B., Philip, S., Johnson, M.S., and Deng F., 2022. Multi-Season Evaluation of CO2 Weather in OCO-2 MIP Models, Journal of Geophysical Research-Atmospheres, Link here

2021

[46] Pal, S., Clark, N.E., Lee, T.R., Conder, M., and Buban, M., 2021. When and where horizontal advection is critical to alter the atmospheric boundary layer features over land: Need for a conceptual framework, Atmospheric Research, https://doi.org/10.1016/j.atmosres.2021.105825.

[45] Wei, Y., Shrestha, R., Pal, S., Gerken, T., McNelis, J., Singh, D., et al., 2021. The ACT-America Datasets: Description, Management and Delivery, Earth and Space Science. Link.

[44] Gaudet, B.J., Davis, K.J., Pal, S., Jacobson, A.R., Schuh, A., Lauvaux, T., Feng, S., and Browell, E.V., 2021. Regional-scale evaluation of global CO2 inversion models using aircraft data from the Atmospheric Carbon and Transport–America project, Journal of Geophysical Research-Atmospheres. In Press, https://doi.org/10.1029/2020JD033623.

[43] Samaddar, A., Feng, S., Lauvaux, T., Pal, S., and Davis, K.J., 2021. Carbon dioxide distribution, origins, and transport along a frontal boundary during summer in mid-latitudes, Journal of Geophysical Research-Atmospheres, Accepted/In Press, https://doi.org/10.1029/2020JD033118

[42] Zheng, T., Feng, S., Davis, K. J.,  Pal, S., and Morguí, J. A., 2021. Development and evaluation of CO2 transport in MPAS-A v6.3, EGU Geoscientific Model Development, https://doi.org/10.5194/gmd-14-3037-2021.  

[41] DiGangi, J.P., Choi, Y., Nowak, J.B., Halliday, H.S., Diskin, G.S., Feng, S., Barkley, Z.R., Lauvaux, T., Pal, S., Davis, K.J., Baier, B.C., Colm Sweeney, C., 2021. Seasonal Variability in Local Carbon Dioxide Combustion Sources over the Central and Eastern US using Airborne In-Situ Enhancement Ratios, Journal of Geophysical Research-Atmospheres., https://doi.org/10.1029/2020JD034525. 

[40] Christensen and co-authors (including Pal, S.), 2021. Opportunistic Experiments to Constrain Aerosol Effective Radiative Forcing, Atmospheric Chemistry and Physics, https://doi.org/10.5194/acp-2021-559. 

[39] Davis, K.J., Browell, E.V., Feng, S., Lauvaux, T., Obland, M., Pal, S., Baier, B., Baker, D.F., et al, 2021. The Atmospheric Carbon and Transport (ACT) - America Mission. Bulletin of American Meteorological Society, https://doi.org/10.1175/BAMS-D-20-0300.1

2020

[38] Lee, T.R., and Pal, S*., 2020. The Impact of Height-independent Errors in State Variables on the Determination of the Daytime Atmospheric Boundary Layer Depth using the Bulk Richardson Approach.  AMS Journal of Atmospheric and Oceanic Technology, https://doi.org/10.1175/JTECH-D-20-0135.1

[37] Pal, S., Lee, T.R., & Clark, N., 2020. 2019 Mississippi and Missouri River Flooding and Its Impact on Atmospheric Boundary Layer Dynamics, Geophysical Research Letters, in press, doi: 10.1029/2019GL086933.

[36] Pal, S., Davis, K.J., Lauvaux, T., Browell, E.V., Gaudet, B.J., Stauffer, D.R., Obland, M.D., Choi, Y., DiGangi, J.P., Feng, S., Lin, B., Miles, N.L., Pauly, R., Richardson, S.R., and Zhang, F., 2020. Observations of Greenhouse Gas Changes across Summer Frontal Boundaries in the Eastern United States, AGU Journal of Geophysical Research: Atmospheres, 125, e2019JD030526. https://doi.org/10.1029/2019JD030526

[35] Campbell, J.F., Lin, B., Dobler, J., Pal, S., Davis, K.J., Obland, M.D., Erxleben, W., McGregor, D., O’Dell, C., Emily Bell, E., Weir, B.,  Fan, T., Kooi, S., Gordon, I., Corbett, A., and Kochanov, R., 2020. Field Evaluation of Column CO2 Retrievals from Intensity-Modulated Continuous-Wave Differential Absorption Lidar Measurements during ACT-America, AGU/Wiley Journal Earth and Space Science, https://doi.org/10.1029/2019EA000847.   

[34] Bell, E., O'Dell, C., Davis, K.J., Campbell, J., Browell, E., Denning, S., Dobler, J., Erxleben, W., Fan, T., Kooi, S., Lin, B., Pal, S., Weir, B., 2020. Evaluation of OCO-2 XCO2 Variability at Local and Synoptic Scales using Lidar and In Situ Observations from the ACT-America Campaigns, AGU Journal of Geophysical Research - Atmospheres, https://doi.org/10.1029/2019JD031400

2019

[33] Pal, S., and Lee, T.R., 2019: , Advected Airmass Reservoirs in the Downwind of Mountains and their Roles in Overrunning Boundary Layer Depths over the Plains, Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL083988.

[32] Pal, S., and Lee, T.R., 2019: Contrasting air mass advection explains significant differences in boundary layer depth seasonal cycles under onshore versus offshore flows, Geophysical Research Letters, https://doi.org/10.1029/2018GL081699

[31] Chen, H., Zhang, L.N., Zhang, F., Davis, K.J., Lauvaux, T., Pal, S., Gaudet, B., and DiGangi, J.P., 2019. Evaluation of regional CO2 mole fractions in the ECMWF CAMS real-time atmospheric analysis and NOAA CarbonTracker Near-Real Time reanalysis with airborne observations from ACT-America field campaigns, Journal of Geophysical Research: Atmospheres, 124. https://doi.org/10.1029/2018JD029992. 

2018

[30] Lee, T.R., De Wekker, S.F.J., and Pal, S., 2018: The impact of the afternoon planetary boundary-layer height on the diurnal cycle of CO and CO2 mixing ratios at a low-altitude mountaintop. Boundary-Layer Meteorology, DOI: 10.1007/s10546-018-0343-9

2017

[29] Pal, S., Lee, T.R., and De Wekker, S.F.J., 2017: A study of the combined impact of boundary layer height and near-surface meteorology on the CO diurnal cycle at a low mountaintop site using simultaneous lidar and in-situ observations, Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2017.05.041

[28] Lee, T.R., and Pal, S*, 2017: On the potential of 25 years (1991-2015) of rawinsonde measurements for elucidating key climatological and spatiotemporal patterns of afternoon boundary layer depths over the contiguous US, Advances in Meteorology. https://doi.org/10.1155/2017/6841239

2016

[27] Pal, S., 2016: On the factors governing water vapor turbulence profiles in the convective boundary layer over land: Concept and data analyses methodology using ground-based lidar measurements, Science of the Total Environment, in press, 555, 17–25, doi:10.1016/j.scitotenv.2016.02.147

[26] Pal, S., De Wekker, S.F.J., Emmitt, G.D., 2016: Spatial variability of the atmospheric boundary layer heights over a low mountain region: Cases from MATERHORN-2012 field experiment, Journal of Applied Meteorology and Climatology, DOI: http://dx.doi.org/10.1175/JAMC-D-15-0277.1.

[25] Koffi, E. N., Bergamaschi, P., Karstens, U., Krol, M., Segers, A., Schmidt, M., Levin, I., Vermeulen, A. T., Fisher, R. E., Kazan, V., Klein Baltink, H., Lowry, D., Manca, G., Meijer, H. A. J., Moncrieff, J., Pal, S., Ramonet, M., and Scheeren, H. A., 2016: Evaluation of the boundary layer dynamics of the TM5 model over Europe, Geoscientific Model Development. doi:10.5194/gmd-2016-48, Accepted, July- 2016.

2015

[24] Pal, S., and Haeffelin, M., 2015: Forcing mechanisms governing diurnal, seasonal, and inter-annual variability in the boundary layer depths: Five years of continuous lidar observations over a suburban site near Paris, Journal of Geophysical Research-Atmospheres, DOI: 10.1002/2015JD023268

[23] Lee, T.R., De Wekker, S.F.J., Pal, S., Andrews, A., Kofler, J., 2015. Meteorological controls on the diurnal variability of carbon monoxide mixing ratio at a mountaintop monitoring site in the Appalachian Mountains, Tellus B 2015, 67, 25659, http://dx.doi.org/10.3402/tellusb.v67.25659.

[22] Behrendt, A., Wulfmeyer, V., Hammann, E., Muppa, S., Pal, S. 2015. Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar, Atmospheric Chemistry and Physics, 15, 5485–5500, doi:10.5194/acp-15-5485-2015.

[21] Fernando, H. J. S. and co-authors (including Pal, S.), 2015. The MATERHORN – Unraveling the Intricacies of Mountain Weather, Bulletin of the American Meteorological Society, http://dx.doi.org/10.1175/BAMS-D-13-00131.1

2014

[20] Pal, S., 2014. Monitoring Depth of Shallow Atmospheric Boundary Layer to Complement LiDAR Measurements Affected by Partial Overlap, Remote Sensing,  6(9), 8468-8493

[19] Pal, S., Lopez, M., Schmidt, M., Ramonet, M., Gibert, F., Xueref-Remy, I., Ciais, P., 2014. Investigation of the atmospheric boundary layer depth variability and its impact on the 222Rn concentration at a rural site in France: Evaluation of a year-long measurement, Journal of Geophysical Research-Atmospheres. doi: 10.1002/2014JD022322.

[18] Pal, S., Lee, T.R., Phelps, S., De Wekker, S.F.J., 2014. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site. Science of the Total Environment, 496, 424–434, doi: 10.1016/j.scitotenv.2014.07.067.

2013

[17] Pal S, Haeffelin M, Batchvarova E, 2013. Exploring a geophysical process-based attribution technique for the determination of the atmospheric boundary layer depth using aerosol lidar and near-surface meteorological measurements, Journal of Geophysical Research-Atmospheres, 118, 1–19.

[16] Cimini, N., Angelini, F., Dupont, J.-C., Pal, S., Haeffelin, M. 2013. Microwave radiometer measurements of mixing layer height, Atmospheric Measurement Techniques, 6, 2941–2951.

[15] Lac C., Donnelly, R.P., Masson, V., Pal, S., Riette, S., Donier, S., Queguiner, S., Tanguy, G., Ammoura, L., and I. Xueref-Remy, 2013. CO2 Dispersion modelling over Paris region within the CO2-MEGAPARIS project, Atmospheric Chemistry and Physics, 13, 4941–4961.

2012

[14] Pal, S., Xueref-Remy, I., Ammoura, L., Chazette, P., Gibert, F., Royer, P., Dieudonné, E., Dupont, J.C., Haeffelin, M., Lac, C., Lopez, M., Morille, Y., Ravetta, F., 2012. Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration: An assessment of the impact of the urban heat island intensity, Atmospheric Environment, 63: 261-275.

[13] Pal, S and Devara PCS, 2012: A wavelet-based spectral analysis of long-term time series of optical properties of aerosols obtained by lidar and radiometer measurements over an urban station in Western India,Journal of Atmospheric and Solar-Terrestrial Physics, 84–85, 75–87. 

2011

[12] Behrendt A, Pal, S, Aoshima F, Bender M, Blyth A, Corsmeier U, Cuesta J, Dick G, Di Girolamo P, Dorninger M, Flamant C, Huang Y, Gorgas T, Kalthoff N, Khodayar S and Wulfmeyer V. (2011) Observation of Convection Initiation Processes with a Suite of State-of-the-Art Research Instruments during COPS IOP8b, Quarterly Journal of Royal Meteorological Society 137: 81-100.

[11] Behrendt A, Pal, S, Wulfmeyer V, Valdebenito AM and Lammel G (2011) ) A novel approach for the characterisation of transport and optical properties of aerosol particles near sources Part I: Measurement of particle backscatter coefficient maps with a scanning UV lidar, Atmospheric Environment 45 2795-2802.

[10] Valdebenito AM, Pal, S, Lammel G, Behrendt A and Wulfmeyer V (2011) A novel approach for the characterization of transport and optical properties of aerosol particles emitted from an animal facility- Part II: High-resolution chemistry transport model and its assessment using lidar measurements Atmospheric Environment 45: 2981-2990.

[9] Bhawar R, Di Girolamo P, Summa D, Flamant C, Althausen D, Behrendt A, Kiemle C, Bosser P, Cacciani M, Champollion C, Di Iorio T, Herold C, Mueller D, Pal S, Riede A, Wirth M and Wulfmeyer V. (2011) Water Vapour Intercomparison Effort in the Frame of the Convective and Orographically-Induced Precipitation Study: Airborne-to-Ground-based and airborne-to-airborne Lidar Systems Quarterly Journal of Royal Meteorological Society 137: 325-348.

[8] Wulfmeyer V, and co-authors (including Pal, S.), 2011: The Convective and Orographically Induced Precipitation Study (COPS): An overview of the field phase and first highlights Quarterly Journal of Royal Meteorological Society 137: 3-30.  [Hot Paper in the field of Geosciences, ScienceWatch.com]

2010 AND BEFORE

[7] Pal, S , Behrendt A and Wulfmeyer V. (2010) Elastic-backscatter-lidar-based characterization of the convective boundary layer and investigation of related statistics Annales Geophysicae, 28: 825-847.

[6] Pal, S , Behrendt A, Bauer H, Radlach M, Riede A, Schiller M, Wagner G and Wulfmeyer V. (2008) 3 -dimensional observations of atmospheric variables during the field campaign COPS IOP: Earth and Environmental Sciences 1 012031, ISSN 1755-1307 (Print),ISSN 1755-1315 (Online).

[5] Pal, S. (2009):A mobile, scanning eye-safe lidar for the study of atmospheric aerosol particles and transport processes in the lower troposphere, Ph.D. Thesis Faculty of Natural Sciences, University of Hohenheim, Stuttgart, Germany.  http://opus.ub.uni-hohenheim.de/volltexte/2009/340/, Published by: Kommunikations-, Informations- und Medienzentrum (KIM). Veröffentlichungsvertrag mit der Universitätsbibliothek Hohenheim ohne Print-on-Demand

[4] Wulfmeyer V, Pal, S, Turner DD and Wagner E., 2010: Can the water vapor Raman lidar resolve profiles of turbulent variables in the convective boundary layer? Boundary Layer Meteorology 136: 253-284.

[3] Behrendt A, Wulfmeyer V, Riede A, Wagner G, Pal, S, Bauer H, Radlach M and Späth F (2009) 3-Dimensional observations of atmospheric humidity with a scanning differential absorption lidar, SPIE 7475, 74750L (2009); doi:10.1117/12.835143, ISBN: 9780819477804. ISBN: 9780819477804.

[2] Groenemeijer P, Barthlott Ch, Behrendt A, Corsmeier U, Handwerker J, Kohler M, Kottmeier Ch, Mahlke H, Pal S, Radlach M, Trentmann J, Wieser A and Wulfmeyer V, 2008: Observations of kinematics and thermodynamic structure surrounding a convective storm cluster over a low mountain range Monthly Weather Review 137 585-602.

[1] Behrendt A, Wagner G, Petrova A, Shiler M, Pal S, Schaberl T and Wulfmeyer V (2005) Modular lidar systems for high-resolution 4-dimensional measurements of water vapor, temperature, and aerosols, SPIE 5653, 220, doi:10.1117/12.579139.


Other relevant discussion papers/reports available with DOI (Not Numbered)