Peer-reviewed-publications

[55] Pal, S., Clark, N.E., Lee, T.R., Conder, M., and Buban, M., 2021. When and where horizontal advection is critical to alter the atmospheric boundary layer features over land: Need for a conceptual framework, Atmospheric Research, https://doi.org/10.1016/j.atmosres.2021.105825.

[54] Pal, S., Lee, T.R., & Clark, N., 2020. 2019 Mississippi and Missouri River Flooding and Its Impact on Atmospheric Boundary Layer Dynamics, Geophysical Research Letters, in press, doi: 10.1029/2019GL086933.

[53] Pal, S., Davis, K.J., Lauvaux, T., Browell, E.V., Gaudet, B.J., Stauffer, D.R., Obland, M.D., Choi, Y., DiGangi, J.P., Feng, S., Lin, B., Miles, N.L., Pauly, R., Richardson, S.R., and Zhang, F., 2020. Observations of Greenhouse Gas Changes across Summer Frontal Boundaries in the Eastern United States, Journal of Geophysical Research: Atmospheres, 125, e2019JD030526. https://doi.org/10.1029/2019JD030526

[52] Pal, S., and Lee, T.R., 2019: , Advected Airmass Reservoirs in the Downwind of Mountains and their Roles in Overrunning Boundary Layer Depths over the Plains, Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL083988.

[51] Pal, S., and Lee, T.R., 2019: Contrasting air mass advection explains significant differences in boundary layer depth seasonal cycles under onshore versus offshore flows, Geophysical Research Letters, https://doi.org/10.1029/2018GL081699

[50] Pal, S., Lee, T.R., and De Wekker, S.F.J., 2017: A study of the combined impact of boundary layer height and near-surface meteorology on the CO diurnal cycle at a low mountaintop site using simultaneous lidar and in-situ observations, Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2017.05.041

[49] Pal, S., De Wekker, S.F.J., Emmitt, G.D., 2016: Spatial variability of the atmospheric boundary layer heights over a low mountain region: Cases from MATERHORN-2012 field experiment, Journal of Applied Meteorology and Climatology, DOI: http://dx.doi.org/10.1175/JAMC-D-15-0277.1.

[48] Pal, S., 2016: On the factors governing water vapor turbulence profiles in the convective boundary layer over land: Concept and data analyses methodology using ground-based lidar measurements, Science of the Total Environment, 555, 17–25, doi:10.1016/j.scitotenv.2016.02.147

[47] Pal, S., and Haeffelin, M., 2015: Forcing mechanisms governing diurnal, seasonal, and inter-annual variability in the boundary layer depths: Five years of continuous lidar observations over a suburban site near Paris, Journal of Geophysical Research-Atmospheres, DOI: 10.1002/2015JD023268

[46] Pal, S., Lopez, M., Schmidt, M., Ramonet, M., Gibert, F., Xueref-Remy, I., Ciais, P., 2014. Investigation of the atmospheric boundary layer depth variability and its impact on the 222Rn concentration at a rural site in France: Evaluation of a year-long measurement, Journal of Geophysical Research-Atmospheres. doi: 10.1002/2014JD022322.

[45] Pal, S., Lee, T.R., Phelps, S., De Wekker, S.F.J., 2014. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site. Science of the Total Environment, 496, 424–434, doi: 10.1016/j.scitotenv.2014.07.067.

[44] Pal, S., 2014. Monitoring Depth of Shallow Atmospheric Boundary Layer to Complement LiDAR Measurements Affected by Partial Overlap, Remote Sensing,  6(9), 8468-8493

[43] Pal S, Haeffelin M, Batchvarova E, 2013. Exploring a geophysical process-based attribution technique for the determination of the atmospheric boundary layer depth using aerosol lidar and near-surface meteorological measurements, Journal of Geophysical Research-Atmospheres, 118, 1–19.

[42] Pal, S., Xueref-Remy, I., Ammoura, L., Chazette, P., Gibert, F., Royer, P., Dieudonné, E., Dupont, J.C., Haeffelin, M., Lac, C., Lopez, M., Morille, Y., Ravetta, F., 2012. Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration: An assessment of the impact of the urban heat island intensity, Atmospheric Environment, 63: 261-275.

[41] Pal, S and Devara PCS, 2012: A wavelet-based spectral analysis of long-term time series of optical properties of aerosols obtained by lidar and radiometer measurements over an urban station in Western India, Journal of Atmospheric and Solar-Terrestrial Physics, 84–85, 75–87. 

[40] Pal, S , Behrendt A and Wulfmeyer V. (2010) Elastic-backscatter-lidar-based characterization of the convective boundary layer and investigation of related statistics Annales Geophysicae, 28: 825-847.

[39] Pal, S , Behrendt A, Bauer H, Radlach M, Riede A, Schiller M, Wagner G and Wulfmeyer V. (2008) 3 -dimensional observations of atmospheric variables during the field campaign COPS IOP: Earth and Environmental Sciences 1 012031, ISSN 1755-1307 (Print),ISSN 1755-1315 (Online).

[38] Pal, S. (2009):A mobile, scanning eye-safe lidar for the study of atmospheric aerosol particles and transport processes in the lower troposphere, Ph.D. Thesis Faculty of Natural Sciences, University of Hohenheim, Stuttgart, Germany.  http://opus.ub.uni-hohenheim.de/volltexte/2009/340/, Published by: Kommunikations-, Informations- und Medienzentrum (KIM). Veröffentlichungsvertrag mit der Universitätsbibliothek Hohenheim ohne Print-on-Demand

[37] Lee, T.R., Pal, S., Leeper, R.D., Wilson, T., Diamond, H., Meyers, T.P., and Turner, D.D., 2024. On the Importance of Regime-Specific Evaluations for Numerical Weather Prediction Models as Demonstrated using the High Resolution Rapid Refresh (HRRR) Model. Weather and Forecasting, Accepted/In print

[36] Lee, T.R., Pal., S., Krishnan, P., Heuer, M., Hirth, B., Meyers, T.P., Kochendorfer, J., Saylor, R., Schroeder, J., 2023. On the efficacy of Monin-Obukhov and bulk Richardson surface- layer parameterizations over drylands , Journal of Applied Meteorology and Climatology, in press, Link here

[35] Hamel, M*., Pal, S., Hirth, B., 2022. Multi-variable turbulence characteristics of the daytime atmospheric boundary layer over an arid region using measurements from a 200-m tall tower. AGU journal Earth and Space Science, in review, Pre-Print available on ESSOAr; https://doi.org/10.1002/essoar.10512363.1

[34] Anand, M*., and Pal, S., 2022. Exploring Atmospheric Boundary Layer Depth Variability in Frontal Environments over an Arid Region, Boundary Layer Meteorology; Accepted, in press

[33] Clark, N.E*., Pal, S., and Lee, T.R., 2022. Empirical evidence for frontal modifications of atmospheric boundary layer depth variability over land, Journal of Applied Meteorology and Climatology, Open Access Article Link here

[32] Walley, S*., Pal, S., Campbell, J.F., Dobler, J., Bell, E., Weir, B., Feng, S., Baker, D., Erxleben, W., Fan, T., Lauvaux, T., Lin, B., McGregor, D., Obland, M.D., O’Dell, C., and Davis, K.J., 2022. Airborne lidar measurements of XCO2 in synoptically active environment and associated comparisons with numerical simulations, Journal of Geophysical Research-Atmospheres, Accepted, in press.

[31] Lee, T.R., and Pal, S*., 2020. The Impact of Height-independent Errors in State Variables on the Determination of the Daytime Atmospheric Boundary Layer Depth using the Bulk Richardson Approach.  Journal of Atmospheric and Oceanic Technology, https://doi.org/10.1175/JTECH-D-20-0135.1

[30] Lee, T.R., and Pal, S*: On the potential of 25 years (1991-2015) of rawinsonde measurements for elucidating key climatological and spatiotemporal patterns of afternoon boundary layer depths over the contiguous US, Advances in Meteorology. https://doi.org/10.1155/2017/6841239

[29] Behrendt A, Pal, S, Aoshima F, Bender M, Blyth A, Corsmeier U, Cuesta J, Dick G, Di Girolamo P, Dorninger M, Flamant C, Huang Y, Gorgas T, Kalthoff N, Khodayar S and Wulfmeyer V. (2011) Observation of Convection Initiation Processes with a Suite of State-of-the-Art Research Instruments during COPS IOP8b, Quarterly Journal of Royal Meteorological Society 137: 81-100.

[28] Behrendt A, Pal, S, Wulfmeyer V, Valdebenito AM and Lammel G (2011) ) A novel approach for the characterisation of transport and optical properties of aerosol particles near sources Part I: Measurement of particle backscatter coefficient maps with a scanning UV lidar, Atmospheric Environment 45 2795-2802.

[27] Valdebenito AM, Pal, S, Lammel G, Behrendt A and Wulfmeyer V (2011) A novel approach for the characterization of transport and optical properties of aerosol particles emitted from an animal facility- Part II: High-resolution chemistry transport model and its assessment using lidar measurements Atmospheric Environment 45: 2981-2990.

[26] Wulfmeyer V, Pal, S, Turner DD and Wagner E., 2010: Can the water vapor Raman lidar resolve profiles of turbulent variables in the convective boundary layer? Boundary Layer Meteorology 136: 253-284.

[25] Wei, Y., Shrestha, R., Pal, S., Gerken, T., McNelis, J., Singh, D., et al., 2021. The ACT-America Datasets: Description, Management and Delivery, Earth and Space Science. http://doi.org/10.1029/2020EA001634 .

[24] Wang, Q., Crowell, S., Pal., S., 2022. Atmospheric variations in column integrated CO2 on synoptic and seasonal time scale over the U.S., Journal of Geophysical Research-Atmospheres. In press, Link here

[23] Gaudet, B.J., Davis, K.J., Pal, S., Jacobson, A.R., Schuh, A., Lauvaux, T., Feng, S., and Browell, E.V., 2021. Regional-scale evaluation of global CO2 inversion models using aircraft data from the Atmospheric Carbon and Transport–America project, Journal of Geophysical Research-Atmospheres. In Press, https://doi.org/10.1029/2020JD033623

[22] Lee, T.R., De Wekker, S.F.J., and Pal, S., 2018: The impact of the afternoon planetary boundary-layer height on the diurnal cycle of CO and CO2 mixing ratios at a low-altitude mountaintop. Boundary-Layer Meteorology, DOI: 10.1007/s10546-018-0343-9

[21] Lee, T.R., De Wekker, S.F.J., Pal, S., Andrews, A., Kofler, J., 2015. Meteorological controls on the diurnal variability of carbon monoxide mixing ratio at a mountaintop monitoring site in the Appalachian Mountains, Tellus B 2015, 67, 25659, http://dx.doi.org/10.3402/tellusb.v67.25659.

[20] Campbell, J.F., Lin, B., Dobler, J., Pal, S., Davis, K.J., Obland, M.D., Erxleben, W., McGregor, D., O’Dell, C., Emily Bell, E., Weir, B.,  Fan, T., Kooi, S., Gordon, I., Corbett, A., and Kochanov, R., 2020. Field Evaluation of Column CO2 Retrievals from Intensity-Modulated Continuous-Wave Differential Absorption Lidar Measurements during ACT-America, AGU/Wiley Journal Earth and Space Science, https://doi.org/10.1029/2019EA000847

[19] Crosman, E., Ward, A.M., Bieda, S., Lindley, T., Gittinger, M., Pal, S., Vepuri, H., 2023. Engaging Undergraduate Students in Collaborative Field Research with the National Weather Service: The SCORCHER Study, Bulletin of American Meteorology Society, Link here

[18] Zheng, T., Feng, S., Davis, K. J., Pal, S., and Morguí, J. A., 2021. Development and evaluation of CO2 transport in MPAS-A v6.3, Geoscientific Model Development, Accepted, https://doi.org/10.5194/gmd-2020-265.  

[17] Samaddar, A., Feng, S., Lauvaux, T., Pal, S., and Davis, K.J., 2021. Carbon dioxide distribution, origins, and transport along a frontal boundary during summer in mid-latitudes, Journal of Geophysical Research-Atmospheres, Accepted/In Press, https://doi.org/10.1029/2020JD033118

[16] Cimini, N., Angelini, F., Dupont, J.-C., Pal, S., Haeffelin, M. 2013. Microwave radiometer measurements of mixing layer height, Atmospheric Measurement Techniques, 6, 2941–2951.

[15] Lac C., Donnelly, R.P., Masson, V., Pal, S., Riette, S., Donier, S., Queguiner, S., Tanguy, G., Ammoura, L., and I. Xueref-Remy, 2013. CO2 Dispersion modelling over Paris region within the CO2-MEGAPARIS project, Atmospheric Chemistry and Physics, 13, 4941–4961.

[14] Zhang, L., Davis, K.J., Schuh, A.E., Jacobson, A.R., Pal, S., Cui, Y., Baker, D., Crowell, S., Chevallier, F., Liu, J., Weir, B., Philip, S., Johnson, M.S., and Deng F., 2021. Multi-Season Evaluation of CO2 Weather in OCO-2 MIP Models, Journal of Geophysical Research-Atmospheres, https://doi.org/10.1029/2021JD035457.

[13] Davis, K.J., Browell, E.V., Feng, S., Lauvaux, T., Obland, M., Pal, S., Baier, B., Baker, D.F., et al, 2021. The Atmospheric Carbon and Transport (ACT) - America Mission. Bulletin of American Meteorological Society, https://doi.org/10.1175/BAMS-D-20-0300.1

[12] DiGangi, J.P., Choi, Y., Nowak, J.B., Halliday, H.S., Diskin, G.S., Feng, S., Barkley, Z.R., Lauvaux, T., Pal, S., Davis, K.J., Baier, B.C., Colm Sweeney, C., 2021. Seasonal Variability in Local Carbon Dioxide Combustion Sources over the Central and Eastern US using Airborne In-Situ Enhancement Ratios, Journal of Geophysical Research-Atmospheres., https://doi.org/10.1029/2020JD034525. 

[11] Chen, H., Zhang, L.N., Zhang, F., Davis, K.J., Lauvaux, T., Pal, S., Gaudet, B., and DiGangi, J.P., 2019. Evaluation of regional CO2 mole fractions in the ECMWF CAMS real-time atmospheric analysis and NOAA CarbonTracker Near-Real Time reanalysis with airborne observations from ACT-America field campaigns, Journal of Geophysical Research: Atmospheres, 124. https://doi.org/10.1029/2018JD029992. 

[10] Behrendt, A., Wulfmeyer, V., Hammann, E., Muppa, S., Pal, S. 2015. Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar, Atmospheric Chemistry and Physics, 15, 5485–5500, doi:10.5194/acp-15-5485-2015.

[9] Behrendt A, Wagner G, Petrova A, Shiler M, Pal S, Schaberl T and Wulfmeyer V (2005) Modular lidar systems for high-resolution 4-dimensional measurements of water vapor, temperature, and aerosols, SPIE 5653, 220, doi:10.1117/12.579139.

[8] Christensen and co-authors (including Pal, S.), 2021. Opportunistic Experiments to Constrain Aerosol Effective Radiative Forcing, Atmospheric Chemistry and Physics,https://doi.org/10.5194/acp-22-641-2022 

[7] Bell  et al. (including Pal, S.)., 2020. Evaluation of OCO-2 XCO2 Variability at Local and Synoptic Scales using Lidar and In Situ Observations from the ACT-America Campaigns, Journal of Geophysical Research - Atmospheres, https://doi.org/10.1029/2019JD031400

[6] Fernando et al. (including Pal, S.), 2015. The MATERHORN – Unraveling the Intricacies of Mountain Weather, Bulletin of the American Meteorological Society, http://dx.doi.org/10.1175/BAMS-D-13-00131.1

[5] Koffi et al. (including Pal, S.)., 2016: Evaluation of the boundary layer dynamics of the TM5 model over Europe, Geoscientific Model Developmentdoi:10.5194/gmd-2016-48, Accepted, July- 2016.

[4] Behrendt et al. (including Pal, S.) 2009. 3-Dimensional observations of atmospheric humidity with a scanning differential absorption lidar, SPIE 7475, 74750L (2009); doi:10.1117/12.835143, ISBN: 9780819477804. ISBN: 9780819477804.

[3] Bhawar et al. (including Pal, S.). 2011. Water Vapour Intercomparison Effort in the Frame of the Convective and Orographically-Induced Precipitation Study: Airborne-to-Ground-based and airborne-to-airborne Lidar Systems Quarterly Journal of Royal Meteorological Society 137: 325-348.

[2] Wulfmeyer et al. (including Pal, S.), 2011. The Convective and Orographically Induced Precipitation Study (COPS): An overview of the field phase and first highlights Quarterly Journal of Royal Meteorological Society 137: 3-30.  [Hot Paper in the field of Geosciences, ScienceWatch.com]

[1] Groenemeijer et al. (including Pal, S.), 2008: Observations of kinematics and thermodynamic structure surrounding a convective storm cluster over a low mountain range Monthly Weather Review 137 585-602.


Other relevant discussion papers/reports available with DOI (Not Numbered)