(1) Sakhuja, A.; Bhattacharyya, R.; Katakia, Y. T.; Ramakrishnan, S. K.; Chakraborty, S.; Jayakumar, H.; Tripathi, S. M.; Pandya Thakkar, N.; Thakar, S.; Sundriyal, S.; Chowdhury, S.; Majumder, S. S-Nitrosylation of EZH2 Alters PRC2 Assembly, Methyltransferase Activity, and EZH2 Stability to Maintain Endothelial Homeostasis. Nat. Commun. 2025, 16 (1), 3953. https://doi.org/10.1038/s41467-025-59003-x. (IF = 14.7, CS = 24.90, SNIP = 3.34)
(2) Kore, M.; Acharya, D.; Sharma, L.; Vembar, S. S.; Sundriyal, S. Development and Experimental Validation of a Machine Learning Model for the Prediction of New Antimalarials. BMC Chem. 2025, 19 (1), 28. https://doi.org/10.1186/s13065-025-01395-4. (IF = 4.3, CS = 5.3, SNIP = 1.195)
(3) Kore, M.; Rao, A. G.; Acharya, D.; Kirwale, S. S.; Bhanot, A.; Govekar, A.; Mohanty, A. K.; Roy, A.; Vembar, S. S.; Sundriyal, S. Design, Synthesis and in Vitro Evaluation of Primaquine and Diaminoquinazoline Hybrid Molecules Against the Malaria Parasite. Chem. – An Asian J. 2025, 20 (6), e202401366. https://doi.org/10.1002/ASIA.202401366. (IF = 3.5, CS = 7.8, SNIP = 0.77)
(4) Tripathi, S. M.; Akash, S.; Rahman, M. A.; Sundriyal, S. Identification of Synthetically Tractable MERS-CoV Main Protease Inhibitors Using Structure-Based Virtual Screening and Molecular Dynamics Potential of Mean Force (PMF) Calculations. J. Biomol. Struct. Dyn. 2025, 43 (2), 787–797. https://doi.org/10.1080/07391102.2023.2283780. (IF = 2.7, CS = 8.9, SNIP = 0.939)
(5) Tandi, M.; Sharma, V.; Gopal, B.; Sundriyal, S. Multicomponent Reactions (MCRs) Yielding Medicinally Relevant Rings: A Recent Update and Chemical Space Analysis of the Scaffolds. RSC Adv. 2025, 15 (2), 1447–1489. https://doi.org/10.1039/D4RA06681B. (IF = 3.9, CS = 7.5, SNIP = 0.83)
(6) Tandi, M.; Tripathi, N.; Gaur, A.; Gopal, B.; Sundriyal, S. Curation and Cheminformatics Analysis of a Ugi-Reaction Derived Library (URDL) of Synthetically Tractable Small Molecules for Virtual Screening Application. Mol. Divers. 2024, 28 (1), 37–50. https://doi.org/10.1007/s11030-022-10588-1. (IF = 3.9, CS = 5.2, SNIP = 1.1)
(7) Gautam, R. K.; Tripathi, S. M.; Akash, S.; Sharma, S.; Sharma, K.; Goyal, S.; Behzad, S.; Gundamaraju, R.; Mishra, D. K.; Zhang, Y.; Shen, B.; Sundriyal, S.; Singla, R. K. Unlocking the Immunomodulatory Potential of Rosmarinic Acid Isolated from Punica Granatum L. Using Bioactivity-Guided Approach: In Silico, In Vitro, and In Vivo Approaches. Curr. Med. Chem. 2024, 31. https://doi.org/10.2174/0109298673291064240227094654. (IF = 3.5, CS = 8.6, SNIP = 1.05)
(8) Kesharwani, S.; Eeba; Tandi, M.; Agarwal, N.; Sundriyal, S. Design and Synthesis of Non-Hydroxamate Lipophilic Inhibitors of 1-Deoxy- <scp>d</Scp> -Xylulose 5-Phosphate Reductoisomerase (DXR): In Silico , in Vitro and Antibacterial Studies. RSC Adv. 2024, 14 (38), 27530–27554. https://doi.org/10.1039/D4RA05083E. (IF = 3.9, CS = 7.5, SNIP = 0.83)
(9) Sundriyal, S. Basic Nitrogen (BaN): A ‘Privileged Element’ in Medicinal Chemistry. Future Med. Chem. 2024, 16 (20), 2069–2071. https://doi.org/10.1080/17568919.2024.2409627. (IF = 3.2, CS = 5.8, SNIP = 0.599)
(10) Sharma, G.; Rana, D.; Sundriyal, S.; Sharma, A.; Panwar, P.; Mahindroo, N. Plants from Annonaceae Family as Antimalarials: An Ethnopharmacology and Phytochemistry Review to Identify Potential Lead Molecules. South African J. Bot. 2023, 155, 154–170. https://doi.org/10.1016/j.sajb.2023.02.015. (IF = 2.7, CS = 5.1, SNIP = 0.997)
(11) Bhanot, A.; Lunge, A.; Kumar, N.; Kidwai, S.; Singh, R.; Sundriyal, S.; Agarwal, N. Discovery of Small Molecule Inhibitors of Mycobacterium Tuberculosis ClpC1: SAR Studies and Antimycobacterial Evaluation. Results Chem. 2023, 5, 100904. https://doi.org/10.1016/j.rechem.2023.100904. (IF = 2.5, CS = 2.7, SNIP = 0.691)
(12) Valluri, H.; Bhanot, A.; Shah, S.; Bhandaru, N.; Sundriyal, S. Basic Nitrogen (BaN) Is a Key Property of Antimalarial Chemical Space. J. Med. Chem. 2023, 66 (13), 8382–8406. https://doi.org/10.1021/acs.jmedchem.3c00206. (IF = 6.9, CS = 12.8)
(13) Kesharwani, S.; Raj, P.; Paul, A.; Roy, K.; Bhanot, A.; Mehta, A.; Gopal, A.; Varshney, U.; Gopal, B.; Sundriyal, S. Crystal Structures of Non-Uracil Ring Fragments in Complex with Mycobacterium Tuberculosis Uracil DNA Glycosylase (MtUng) as a Starting Point for Novel Inhibitor Design: A Case Study with the Barbituric Acid Fragment. Eur. J. Med. Chem. 2023, 258, 115604. https://doi.org/10.1016/j.ejmech.2023.115604. (IF = 6.0, CS = 11.7, SNIP = 1.57)
(14) Raj, P.; Selvam, K.; Roy, K.; Mani Tripathi, S.; Kesharwani, S.; Gopal, B.; Varshney, U.; Sundriyal, S. Identification of a New and Diverse Set of Mycobacterium Tuberculosis Uracil-DNA Glycosylase (MtUng) Inhibitors Using Structure-Based Virtual Screening: Experimental Validation and Molecular Dynamics Studies. Bioorg. Med. Chem. Lett. 2022, 76, 129008. https://doi.org/10.1016/j.bmcl.2022.129008. (IF = 2.5, CS = 5.7, SNIP = 0.631)
(15) Sundriyal, S.; Eeda, V.; Lagisetty, P.; Awasthi, V. Tubulin Inhibitory Activity of a Novel Colchicine-Binding Compounds Based on a Dinaphthospiropyranran Scaffold. Bioorganic Med. Chem. 2021, 29, 115874. https://doi.org/10.1016/j.bmc.2020.115874. (IF = 3.3, CS = 6.8, SNIP = 0.817)
(16) Kesharwani, S.; Sundriyal, S. Non-Hydroxamate Inhibitors of 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase (DXR): A Critical Review and Future Perspective. Eur. J. Med. Chem. 2021, 213, 113055. https://doi.org/10.1016/j.ejmech.2020.113055. (IF = 6.0, CS = 11.7, SNIP = 1.57)
(17) Bhanot, A.; Sundriyal, S. Physicochemical Profiling and Comparison of Research Antiplasmodials and Advanced Stage Antimalarials with Oral Drugs. ACS Omega 2021, 6 (9), 6424–6437. https://doi.org/10.1021/acsomega.1c00104. (IF = 3.7, CS = 6.6, SNIP = 0.899)
(18) Mehta, A.; Raj, P.; Sundriyal, S.; Gopal, B.; Varshney, U. Use of a Molecular Beacon Based Fluorescent Method for Assaying Uracil DNA Glycosylase (Ung) Activity and Inhibitor Screening. Biochem. Biophys. Reports 2021, 26, 100954. https://doi.org/10.1016/j.bbrep.2021.100954. (IF = 2.3, CS = 4.6, SNIP = 0.584)
(19) Kalesh, K.; Sundriyal, S.; Perera, H.; Cobb, S. L.; Denny, P. W. Quantitative Proteomics Reveals That Hsp90 Inhibition Dynamically Regulates Global Protein Synthesis in Leishmania Mexicana. mSystems 2021, 6 (3), e00089--21. https://doi.org/10.1128/msystems.00089-21. (IF = 5.0, CS = 9.4, SNIP = 1.193)
(20) Tandi, M.; Sundriyal, S. Recent Trends in the Design of Antimicrobial Agents Using Ugi-Multicomponent Reaction. J. Indian Chem. Soc. 2021, 98 (8), 100106. https://doi.org/10.1016/j.jics.2021.100106. (IF = 3.2, CS = 3.5, SNIP = 0.609)
(21) Rana, D.; Kalamuddin, M.; Sundriyal, S.; Jaiswal, V.; Sharma, G.; Das Sarma, K.; Sijwali, P. S.; Mohmmed, A.; Malhotra, P.; Mahindroo, N. Identification of Antimalarial Leads with Dual Falcipain-2 and Falcipain-3 Inhibitory Activity. Bioorganic Med. Chem. 2020, 28 (1), 115155. https://doi.org/10.1016/j.bmc.2019.115155. (IF = 3.3, CS = 6.8, SNIP = 0.817)
(22) Khanna, S.; Sundriyal, S.; Bharatam, P. V. Pharmacophore Mapping and Virtual Screening for the Identification of New PPARy Agonists. J. Indian Chem. Soc. 2020, 97 (8), 1191–1197. (IF = 3.2, CS = 3.5, SNIP = 0.609)
(23) Sundriyal, S.; Moniot, S.; Mahmud, Z.; Yao, S.; Di Fruscia, P.; Reynolds, C. R.; Dexter, D. T.; Sternberg, M. J. E.; Lam, E. W. F.; Steegborn, C.; Fuchter, M. J. Thienopyrimidinone Based Sirtuin-2 (SIRT2)-Selective Inhibitors Bind in the Ligand Induced Selectivity Pocket. J. Med. Chem. 2017, 60 (5), 1928–1945. https://doi.org/10.1021/acs.jmedchem.6b01690. (IF = 6.9, CS = 12.8)
(24) Sundriyal, S.; Chen, P. B.; Lubin, A. S.; Lueg, G. A.; Li, F.; White, A. J. P.; Malmquist, N. A.; Vedadi, M.; Scherf, A.; Fuchter, M. J. Histone Lysine Methyltransferase Structure Activity Relationships That Allow for Segregation of G9a Inhibition and Anti-Plasmodium Activity. Medchemcomm 2017, 8 (5), 1069–1092. https://doi.org/10.1039/c7md00052a. (IF = 4.1, CS = 5.8)
(25) Brown, R.; Kandil, S.; Sundriyal, S.; Fuchter, M. Synergy in Reversing Platinum Resistance by Combined Inhibition of EZH2 and EHMT1/2. Eur. J. Cancer 2016, 69, S74. https://doi.org/10.1016/S0959-8049(16)32814-3. (IF = 7.6, CS = 11.5, SNIP = 2.67)
(26) Malmquist, N. A.; Sundriyal, S.; Caron, J.; Chen, P.; Witkowski, B.; Menard, D.; Suwanarusk, R.; Renia, L.; Nosten, F.; Jiménez-Díaz, M. B.; Angulo-Barturen, I.; Martínez, M. S.; Ferrer, S.; Sanz, L. M.; Gamo, F. J.; Wittlin, S.; Duffy, S.; Avery, V. M.; Ruecker, A.; Delves, M. J.; Sinden, R. E.; Fuchter, M. J.; Scherf, A. Histone Methyltransferase Inhibitors Are Orally Bioavailable, Fast- Acting Molecules with Activity against Different Species Causing Malaria in Humans. Antimicrob. Agents Chemother. 2015, 59 (2), 950–959. https://doi.org/10.1128/AAC.04419-14. (IF = 4.1, CS = 9.3, SNIP = 1.44)
(27) Sundriyal, S.; Malmquist, N. A.; Caron, J.; Blundell, S.; Liu, F.; Chen, X.; Srimongkolpithak, N.; Jin, J.; Charman, S. A.; Scherf, A.; Fuchter, M. J. Development of Diaminoquinazoline Histone Lysine Methyltransferase Inhibitors as Potent Blood-Stage Antimalarial Compounds. ChemMedChem 2014, 9 (10), 2360–2373. https://doi.org/10.1002/cmdc.201402098. (IF = 3.6, CS = 6.7, SNIP = 0.766)
(28) Srimongkolpithak, N.; Sundriyal, S.; Li, F.; Vedadi, M.; Fuchter, M. J. Identification of 2,4-Diamino-6,7-Dimethoxyquinoline Derivatives as G9a Inhibitors. Medchemcomm 2014, 5 (12), 1821–1828. https://doi.org/10.1039/c4md00274a. (IF = 4.1, CS = 5.8)
(29) Cherblanc, F. L.; Chapman, K. L.; Reid, J.; Borg, A. J.; Sundriyal, S.; Alcazar-Fuoli, L.; Bignell, E.; Demetriades, M.; Schofield, C. J.; DiMaggio, P. A.; Brown, R.; Fuchter, M. J. On the Histone Lysine Methyltransferase Activity of Fungal Metabolite Chaetocin. J. Med. Chem. 2013, 56 (21), 8616–8625. https://doi.org/10.1021/jm401063r. (IF = 6.9, CS = 12.8)
(30) Chen, P.; Horton, L. B.; Mikulski, R. L.; Deng, L.; Sundriyal, S.; Palzkill, T.; Song, Y. 2-Substituted 4,5-Dihydrothiazole-4-Carboxylic Acids Are Novel Inhibitors of Metallo-β-Lactamases. Bioorganic Med. Chem. Lett. 2012, 22 (19), 6229–6232. https://doi.org/10.1016/j.bmcl.2012.08.012. (IF = 2.5, CS = 5.7, SNIP = 0.631)
(31) Nair, S. C.; Brooks, C. F.; Goodman, C. D.; Sturm, A.; McFadden, G. I.; Sundriyal, S.; Anglin, J. L.; Song, Y.; Moreno, S. N. J.; Striepen, B. Apicoplast Isoprenoid Precursor Synthesis and the Molecular Basis of Fosmidomycin Resistance in Toxoplasma Gondii. J. Exp. Med. 2012, 209 (5), 1051. https://doi.org/10.1084/jem.201100392095c. (IF = 12.6, CS = 19.7, SNIP = 2.275)
(32) Sharma, R. K.; Sundriyal, S.; Wangoo, N.; Tegge, W.; Jain, R. New Antimicrobial Hexapeptides: Synthesis, Antimicrobial Activities, Cytotoxicity, and Mechanistic Studies. ChemMedChem 2010, 5 (1), 86–95. https://doi.org/10.1002/cmdc.200900330. (IF = 3.6, CS = 6.7, SNIP = 0.766)
(33) Kasetti, Y.; Patel, N. K.; Sundriyal, S.; Bharatam, P. V. Conformational Polymorphism in Sulfonylurea Drugs: Electronic Structure Analysis. J. Phys. Chem. B 2010, 114 (35), 11603–11611. https://doi.org/10.1021/jp101327k. (IF = 2.8, CS = 5.8, SNIP = 1.26)
(34) Sundriyal, S.; Bharatam, P. V. “Sum of Activities” as Dependent Parameter: A New CoMFA-Based Approach for the Design of Pan PPAR Agonists. Eur. J. Med. Chem. 2009, 44 (1), 42–53. https://doi.org/10.1016/j.ejmech.2008.03.014. (IF = 6.0, CS = 11.7, SNIP = 1.57)
(35) Sundriyal, S.; Bharatam, P. V. Important Pharmacophoric Features of Pan PPAR Agonists: Common Chemical Feature Analysis and Virtual Screening. Eur. J. Med. Chem. 2009, 44 (9), 3488–3495. https://doi.org/10.1016/j.ejmech.2009.01.024. (IF = 6.0, CS = 11.7, SNIP = 1.57)
(36) Deng, L.; Sundriyal, S.; Rubio, V.; Shi, Z. Z.; Song, Y. Coordination Chemistry Based Approach to Lipophilic Inhibitors of 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase. J. Med. Chem. 2009, 52 (21), 6539–6542. https://doi.org/10.1021/jm9012592. (IF = 6.9, CS = 12.8)
(37) Sundriyal, S.; Khanna, S.; Saha, R.; Bharatam, P. V. Metformin and Glitazones: Does Similarity in Biomolecular Mechanism Originate from Tautomerism in These Drugs? J. Phys. Org. Chem. 2008, 21 (1), 30–33. https://doi.org/10.1002/poc.1273. (IF = 1.9, CS = 3.6, SNIP = 0.61)
(38) Sundriyal, S.; Sharma, R. K.; Jain, R.; Bharatam, P. V. Minimum Requirements of Hydrophobic and Hydrophilic Features in Cationic Peptide Antibiotics (CPAs): Pharmacophore Generation and Validation with Cationic Steroid Antibiotics (CSAs). J. Mol. Model. 2008, 14 (4), 265–278. https://doi.org/10.1007/s00894-008-0268-1. (IF = 2.1, CS = 2.5, SNIP = 0.58)
(39) Sundriyal, S.; Viswanad, B.; Ramarao, P.; Chakraborti, A. K.; Bharatam, P. V. New PPARγ Ligands Based on Barbituric Acid: Virtual Screening, Synthesis and Receptor Binding Studies. Bioorg. Med. Chem. Lett. 2008, 18 (18), 4959–4962. https://doi.org/10.1016/j.bmcl.2008.08.028. (IF = 2.5, CS = 5.7, SNIP = 0.631)
(40) Sundriyal, S.; Viswanad, B.; Bharathy, E.; Ramarao, P.; Chakraborti, A. K.; Bharatam, P. V. New PPAR$γ$ Ligands Based on 2-Hydroxy-1, 4-Naphthoquinone: Computer-Aided Design, Synthesis, and Receptor-Binding Studies. Bioorg. Med. Chem. Lett. 2008, 18 (11), 3192–3195. (IF = 2.5, CS = 5.7, SNIP = 0.631)
(41) Bharatam, P.; Patel, D.; Adane, L.; Mittal, A.; Sundriyal, S. Modeling and Informatics in Designing Anti-Diabetic Agents. Curr. Pharm. Des. 2007, 13 (34), 3518–3530. https://doi.org/10.2174/138161207782794239. (IF = 2.6, CS = 5.7, SNIP = 0.77)
(42) Sundriyal, S.; Sharma, R.; Jain, R. Current Advances in Antifungal Targets and Drug Development. Curr. Med. Chem. 2006, 13 (11), 1321–1335. https://doi.org/10.2174/092986706776873023. (IF = 3.5, CS = 8.6, SNIP = 1.05)
(43) Bharatam, P. V.; Sundriyal, S. Molecular Electrostatic Potentials in the Design of Dendrimers for the Delivery of Glitazones. J. Nanosci. Nanotechnol. 2006, 6 (9–10), 3277–3282. https://doi.org/10.1166/jnn.2006.473. (IF = 1.3)
(1) Sundriyal, S; Bhanot, A; Pandey, K.; Chitkara, D. et al. “Novel Quinazoline/Quinoline compounds and their uses in malaria and cancer. (Indian Patent Filed)
(2) Sundriyal, S; Tandi, M. et al. “A process for the synthesis of polypeptoids from α-amino acids and preparing polymeric nanoparticles therefrom. (Indian Patent Filed)
(3) Jain, R; Sharma, R. K.; Sundriyal, S.; Khan, S.I.; Jacob, M. “Novel linear antimicrobial peptides (AMPs) effective against fungal and bacterial infections.” Indian patent application 1011/DEL/2006 A, Filing date: 2006-04-18, Publication date: 2008-01-18