4th year: speciality SET 

*****************************************************************************

1) Intelligent distributed systems 

Courses

Course 1: Fundamentals and theoretical concepts, Material.

Course 2: Distributed system for robotics, Material.

Practical works

PW 1: 3D calibration of a ultra-sound sensor system, Material

Tutorial: Theoretical study of SLAM algorithm, Material

Project: Visual SLAM, Material


********************************************************************

2) Navigation with sensor systems (CIRI) 

Courses

Course (all): Material.

Practical works

PW 1: Study of multivariate Gaussian distribution, Material

PW 2: Kalman filter for a GNSS navigation problem, Material

Project: Radar Target Tracking, Material

*****************************************************************************

3) Hyperwave guided and unguided propagation

Courses

Course 1: Basics of transmission line theory, Material.

Course 2: Progressive and standing wave, Material.

Course 3: Introduction to unguided wave propagation, Material.

Practical works

TD 1: Transmission line equations, Material.

TD 2: Progressive and standing wave, Material.

PW : Theoretical and numerical study of channel equalization

*****************************************************************************

4) Model-based engineering

Courses

Course 1: Introduction to complex systems, Material.

Course 2: Complex system and object-oriented programming, Material.

Practical works

PW 1, Material, Correction

PW 2, Material


--------------------------------------------------------------------------------------------------------------


5th year : speciality SET

*******************************************************************************************

1) Advanced Concepts in machine learning

Courses

Course 1 : Unsupervised learning aspects.

Course 2 : Supervised learning aspects.

Practical works

PW 1: EM algorithm implementation.

PW 2: Variational Autoencoder implementation.

Project: Recurrent neural network for character prediction.

*******************************************************************************************

2) Signal processing for Radar array

Courses

Course 1: Array model and spatial filtering.

Course 2: DoA estimation.

Tutorials

Tuto 1: Signal model and beamforming.

Tuto 2: DoA estimation.

Practical works

Project: Study and implementation of beamforming and DoA estimation techniques.

*******************************************************************************************

3) Estimation and identification

Courses

Course 1: Basic and fundamentals in statistical estimation.

Course 2: Monte-Carlo methods.

Course 3: Online estimation problem.

Tutorials

Tuto 1: Fundamentals of statistical estimation.

Practical works

PW 1: Monte-Carlo simulations.

PW 2: MCMC methods.

PW 3: Kitagawa model estimation with particle filtering.