Speaker: Theo Sturm

Title: Wasserstein Diffusion on Multidimensional Spaces


Abstract: Given any closed Riemannian manifold $M$, we construct a reversible diffusion process on the space $\mathcal{P}(M)$ of probability measures on $M$ that is

$$d\mathbb{P}^\beta(\mu) =\frac{1}{Z} e^{-\beta \, \text{Ent}(\mu | m)}\ d\mathbb{P}^0(\mu);$$

$$\mathcal{E}_W(f)=\liminf_{\tilde f\to f}\ \frac12\int_{\mathcal{P}(M)} \big\|\nabla_W \tilde f\big\|^2(\mu)\ d\mathbb{P}^\beta(\mu);$$