Quantum information processing exploits all the features quantum mechanics offers. Among them there is the possibility to induce nonlinear maps on the given quantum system by involving two or more identical copies of the state of the system. Such maps play a central role in distillation protocols used for quantum key distribution. We show that such protocols can exhibit chaotic evolution not only for initial pure states but also for mixed states, i.e. the chaotic dynamics is not destroyed by initial uncertainty. In contrast to common wisdom the presence of classical uncertainty in the initial state does not eliminate the presence of chaotic dynamics. We show that the appearance of chaotic dynamics has the character of a second order phase transition and the purity of the initial state plays the role of the control parameter. In addition we give numerical evidence for the exponential expansion of the attractor area.
The work is carried out in collaboration with T. Kiss, G. Alber, O. Kalman and others.
差分プライバシーは、個人情報を含むデータ解析における標準的な保護手法として広く普及している。特に、ノイズの追加によってモデルの出力を不確実にする目的関数摂動は、正則化付き最適化問題と自然に整合する点で注目される。一方で、DP導入に伴う推定精度の劣化、いわゆるプライバシー・精度トレードオフの定量的理解は、高次元・スパースな設定では未解明の点が多く残されている。
本講演では、LASSO推定に対する目的関数摂動型の差分プライバシーメカニズムに着目し、その典型的振る舞いを統計力学の手法を用いて解析する。さらに、近似確率伝搬法と呼ばれるアルゴリズムに基づく摂動的方法を導入し、交差検証誤差評価法をプライバシー指標の評価に応用する方法を紹介する。
Over the past 15 years, social science scholars have seen a rapid increase in the use of empirical methods and research designs for causal inference. A large majority of these methods, however, are targeted toward the narrow goal of identifying simple cause-and-effect relationships between two variables that hold on average, such as the average treatment effect (ATE). The limited scope of the existing methodological literature often forces scientists to focus on estimating causal quantities that do not directly correspond to the theoretical questions of true interest. In this talk, I provide an overview of the emerging body of methodological research that combats this increasing divergence between the theoretical and the empirical in various disciplines. Specifically, I discuss statistical and experimental methods for analyzing complex causal questions that go beyond traditional quantities of interest such as the ATE, highlighting several of the key recent developments in the analysis of causal mechanisms and explanations, including my own contributions.
注: セミナー自体は英語で開催されますが、質疑応答は日本語・英語どちらでも構いません。
空間レイヤープラットフォームSTYLYを展開する株式会社STYLYのCEO山口征浩がスタートアップ企業として市場を切り開く戦略を交え、最新のXR・AIの動向や未来を語る。
バス情報: 第三エリア前 17:09発 → 吾妻小学校 17:17 着 (つくばスタートアップパーク目の前)
(第一部)複数のプロセスが両立可能であるとは、それらをまとめた一つのプロセスが存在することを意味する。量子論には両立可能ではない測定が存在し、これは古典論と著しく違う性質である。ところで量子測定過程においては、これまで複数の異なる両立可能性の概念が提案されている[1]。本発表では、動的リソース理論の観点から、異なる両立可能性の概念を統合し両立不可能性を定量化する方法を紹介する[2]。
(第二部)測定によって取得した情報を用いたフィードバック制御という操作が、熱力学第二法則を破るように見えるという問題は、「マクスウェルの悪魔のパラドックス」として熱・統計力学の基礎において長年議論されてきた。このパラドックスの解決として広く受け入れられているのは、フィードバック制御で第二法則を破った分は、測定と測定で得たデータのリセットによって埋め合わされるというものである[3]。本発表では、フィードバック制御のための測定過程を、量子論で実現可能な一般の測定過程の数学的表現であるCP-インストルメント[4]として解析を行い、測定 +フィードバック制御+リセットの一連のプロセスと第二法則が整合する条件を議論する[5]。
<参考文献>
[1] A. Mitra and M. Farkas, Phys. Rev. A 105, 052202 (2022).
[2] F. Buscemi, K. Kobayashi, S. Minagawa, P. Perinotti, and A. Tosini, Quantum 7, 1035 (2023).
[3] T. Sagawa and M. Ueda, Phys. Rev. Lett. 102, 250602 (2009).
[4] M. Ozawa, J. Math. Phys. 25, 79 (1984).
[5] S. Minagawa, M. H. Mohammady, K. Sakai, K. Kato, and F. Buscemi, npj Quantum Information 11, 18 (2025).
Quantum randomness is intrinsically different from classical stochasticity since it is affected by interference and entanglement. Both make quantum walks promising candidates for the implementation of quantum computational algorithms and as a sensitive detector of interference. We present a discrete-time quantum walk that uses the momentum of ultra-cold rubidium atoms as the walk space and two internal atomic states as the coin degree of freedom [1]. We demonstrate the distinctive features of a quantum walk, contrasting them to a classical walk. By manipulating either the walk or coin operator we show how the walk dynamics can be biased and even reversed. Our quantum walk provides a platform for a wide range of applications such as quantum search, the investigation of decoherence [2], and the observation of topological phases [3].
References:
[1] S. Dadras, A. Gresch, C. Groiseau, S. Wimberger, G.S. Summy, Quantum Walk in Momentum Space with a Bose-Einstein Condensate, Phys. Rev. Lett. 121, 070402 (2018)
[2] J.H. Clark, C. Groiseau, Z.N. Shaw, S. Dadras, C. Binegar, S. Wimberger, G.S. Summy, Y. Liu, Quantum to Classical Walk Transitions Tuned by Spontaneous Emissions, Phys. Rev. Research 3, 043062 (2021)
[3] N. Bolik, C. Groiseau, J.H. Clark, G.S. Summy, Y. Liu, S. Wimberger, Detecting Topological Phase Transitions in a Double Kicked Quantum Rotor, Phys. Rev. A 106, 043318 (2022)
私たちは、子どもの頃から弾性が関わった様々な自然現象を目にしてきている。たとえば、葉の上の朝露や、朝顔の蔓の巻き付き、濡れた髪の毛の接着などは、表面張力や弾性変形、その両者が効いている現象である。いずれも、小さな力で大きくしなやかに変形して、多彩なかたちを生み出す。このようなかたちと力の関係は、古典的な力学の問題でありつつ、その物理的な奥の深さと応用性から、近年改めて注目が集まっている。特に、表面張力と弾性変形がカップリングした現象はelasto-capillarity (弾性毛管現象)として2000年頃から研究が盛んに行われてきた[1]。本セミナーでは、弾性ひもやシートが見せるかたちに着目して[2-5]、そこに潜む物理法則とメカニズムについて議論する。また、動く「ひも」状の分子(微小管)に関する最近の結果についても、簡単に紹介する予定である。
[1] J. Bico, E. Reyssat and B. Roman, Annual Review of Fluid Mechanics 50, 629 (2018).
[2] M. Tani and H. Wada, Phys. Rev. Lett. 132(5), 058204 (2024).
[3] 谷茉莉, 和田浩史, 日本物理学会誌80, 62 (2025).
[4] H. Bense, M. Tani, M. Saint-Jean, E. Reyssat, B. Roman and J. Bico, Soft matter 16, 1961 (2020).
[5] M. Tani, J.-W. Hong, T. Tomizawa, E. Lepoivre, J. Bico and B. Roman, Extreme Mech. Lett. 71, 102 (2024).
バイオリンは身近な楽器でありながら、複雑で多様な振る舞いをする。その背景にあるのは、摩擦の非線形性を伴う擦弦振動である。バイオリンの物理学は、古くからH. V. Helmholtz[1]、Lord Rayleigh[2]、C. V. Raman[3]を含む多くの物理学者の関心を集めてきた。寺田寅彦[4]もまた、自らがバイオリンの演奏者であると共にその物理学に惹かれた一人である。本セミナーでは、私が興味を持って研究している、バイオリンにおけるハーモニクス奏法(フラジオレット奏法)という演奏法の解析[5]を中心に、バイオリンの背後に潜む物理学について紹介する。
[1] H. V. Helmholtz. “Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik (On the Sensations of Tone as a Physiological Basis for the Theory of Music)”, 2. Aufl. Braunschweig: CK und Verlag von Friedrich Vieweg und Sohn, 1865.
[2] L. Rayleigh. “The Theory of Sound.” UK, Macmillan, 1894.
[3] C. V. Raman. “On the mechanical theory of the vibrations of bowed strings and of musical instruments of the violin family, with experimental verification of the results.” Indian Association for the Cultivation of Science, 1918.
[4] 寺田寅彦. “手首の問題.” 中央公論. 1932.
[5] S. Tanaka, H. Kori, A. Ozawa; A mathematical study about the sustaining phenomenon of overtone in flageolet harmonics on bowed string instruments. Proc. Mtgs. Acoust. 4 December 2023; 52 (1): 035006
Human Computer Interaction (HCI)が創出する「新しさ」は、なぜ理学系の研究者に伝わりにくいのか。本発表は、HCIが単に新しいモノを作るのではなく、人間と技術の「新しい関係性」を具体的に構成し、その価値を問う研究分野であることを考察する。その独自の研究プロセス──試作と評価の反復、数値化できない「体験」の重視、新しい「当たり前」の社会実装──が持つ内在的な関係性を、様々な事例を用いて議論する。これにより、HCIという知的な営みが、いかにして未来の可能性を具体的に構成していくかを示し、分野間の深い対話を目指す。
共催:株式会社Litable
事前参加登録にご協力ください。
Recently, hybrid entanglement (HE), which involves entangling a qubit with a coherent state, has demonstrated superior performance in various quantum information processing tasks, particularly in quantum key distribution [arXiv:2305.18906(2023)].
Despite its theoretical advantages, the practical generation of these states in the laboratory has been a challenge. In this context, we introduce a deterministic and efficient approach for generating HE states using quantum walks. Our method achieves a remarkable fidelity of 99.90 % with just 20 time steps in a one-dimensional split-step quantum walk. This represents a significant improvement over prior approaches that yielded HE states only probabilistically, often with fidelities as low as 80%. Our scheme not only provides a robust solution to the generation of HE states but also highlights a unique advantage of quantum walks, thereby contributing to the advancement of this burgeoning field. Moreover, our scheme is experimentally feasible with the current technology.
The discrete Laplacian of an infinite, Z^d-periodic graph (e.g. Z^d itself, the honeycomb lattice, infinite strips, face-centered cubic lattices...etc) has a band spectrum which is typically absolutely continuous, but for certain geometries, infinitely degenerate eigenvalues appear, which are known as ``flat bands''. They have corresponding eigenvectors of compact support. Flat bands have been extensively studied by physicists in recent years, with hundreds of papers on the subject. Mathematically they have been much less explored, and many fundamental questions remain completely open. I will introduce this exciting topic, give some recent results with Pierre Youssef, and discuss some open problems.
Path encoding for photonic qubits and qudits is the most suitable degree of freedom to be employed in integrated circuits. Integrated photonic devices are essential to process in a precise and scalable way such quantum states. This seminar focused on the correct manipulation and characterization of high-dimensional path-encoded single photon states in integrated optical circuits. In particular, it will be discussed the certification of such kinds of experiments since the exponential complexity of tomographic processes makes this problem a challenging task. One of the last results in this field showed the verification of coherence and dimension witnesses tailored for quantum systems of increasing dimension, using pairwise overlap measurements. Such a procedure has been enabled by the precise control of a reconfigurable six-mode universal photonic chip fabricated with the femtosecond laser writing technology. In particular, the device enabled the verification of coherence and dimension witnesses for qudits of dimensions up to 5.
Quantum correlations, those exhibited between two or more quantum systems and that cannot be explained in classical terms, are at the core of quantum theory and its applications for information processing. Previous research has shown that the causal modeling framework offers a powerful set of techniques to study and analyze nonclassicality, and to extend this notion to general networks with independent sources of correlations and communication between parties. Interventions are an essential tool in causal inference, enabling us to determine the causal relationships between variables in a given process. Unlike passive observations, interventions involve locally changing the underlying causal structure of an experiment, by erasing all external influences that a given variable might have and putting it under the exclusive control of an observer. Interestingly, through interventions, we can demonstrate the quantum behavior of a system that may appear classical at the observational level. One paradigmatic example is the instrumental causal structure, where violations of causal bounds that rely on a specific measure of causal influence, called the average causal effect (ACE), can be violated even when no violation is possible with observational data.This suggests a new approach that takes into account all available interventional and observational data in a given experiment, and can be applied to arbitrary scenarios.
This approach extends the notion of classical correlations to include interventional data, defining a set that is now bounded by hybrid (observational and interventional) inequalities, which subsumes all Bell-like and causal bounds, and provides a general method to better detect and characterize nonclassical behavior.
Igor Jex (Czech Technical University, Czech Republic) November 10th
Ayaka Sakata (Ochanomizu University / RIKEN) October 17th
Paulo Nussenzveig (University of São Paulo, Brazil) October 8th
Jun Takahashi (University of Tokyo, ISSP) October 1st - 3rd
Daiyu Nobori (SoftEther Corporation) October 1st
Junpei Kuwana (SoftEther Corporation) October 1st
Teppei Yamamoto (Waseda University) September 29th
Masahiro Yamaguchi (Styly Inc.) August 20th
Masako Kishida (National Institute of Informatics) August 19th and September 25th
Masumi Ito (Cabinet Office) August 4th
Shodai Tanaka (Stanford University, USA) July 18th
Marie Tani (Kyoto University) June 19th - 20th
Sandro Marcel Wimberger (Parma University, Italy) June 4th
Yusuke Sakai (Tokyo City University) May 15th
Rinosuke Sameshima (National Institute of Technology, Kagoshima College) May 13th - 14th
Tadaomi Shimizu (Hokkaido University) March 3rd - 7th
Masako Kishida (National Institute of Informatics) February 5th
Satoya Imai (QSTAR, INO-CNR, and LENS in Florence) January 23rd and 24th
Eriko Kaminishi (Keio University) January 9th
Daiyu Nobori (SoftEther Corporation) December 12th
Junpei Kuwana (SoftEther Corporation) December 12th
Tetsuo Sugiyama (SoftEther Corporation) December 12th
Takao Ito (SoftEther Corporation) December 12th
Satoshi Matsumoto (SoftEther Corporation) December 12th
Genya Hatakeyama (SoftEther Corporation) December 12th
Sandu Popescu (University of Bristol, UK) November 18th
Takano Taira (ISSP, the University of Tokyo) August 23rd
Ryu Hayakawa (Kyoto University) May 27th
Masaki Sasano (RIKEN Nishina Center) April 23rd, Oct. 30th, and Feb. 12th
Tomohiro Oishi (RIKEN Nishina Center) April 23rd
Tomoya Naito (RIKEN iTHEMS) April 23rd
Christian Sommer (Alpine Quantum Technologies, Austria) March 21st
Tadashi Kuramoto (Okayama University) February 26th
Takahiko Matsuda (Okayama University) February 26th
Sumito Tsunegi (AIST) February 16th
Tatsuaki Wada (Ibaraki University) February 15th and March 5th
Masaki Sasano (RIKEN Nishina Center) February 8th
Kenkichi Takase (Chuo University) January 22nd
Hitoshi Hanami (Iwate University) December 25th
Davide Poderini (Sapienza University of Rome, Italy) November 13th
Taira Giordani (Sapienza University of Rome, Italy) November 13th
Mostafa Sabri (New York University, Abu Dhabi campus, UAE) November 13th
Rohit Sarma Sarkar (Indian Institute of Technology Kharagpur, India) November 9th
Pramod Padmanabhan (Indian Institute of Technology Bhubaneswar, India) November 9th and 13th
Vikash Mittal (National Tsing Hua University, Taiwan) November 9th and 13th
Haruki Emori (Hokkaido University) October 23rd
Tadaomi Shimizu (Hokkaido University) October 23rd and February 5th - March 11th