研究資料管理
Research Data Management (RDM)
Research Data Management (RDM)
研究資料管理是指對研究過程中產生的所有研究資料進行的規劃、組織、儲存、保護和共享的過程。這包括:
理解資料的生命週期
選擇適當的儲存解決方案
實施資料保護措施
確保資料的可取用性和可再現性
最終的資料保存或銷毀
良好的研究資料管理可以提高研究效率,增強資料的完整性和再利用價值,並符合研究資助者與期刊提供者的要求。
Research Data Management (RDM) is the process of planning, organizing, storing, protecting, and sharing all research data generated during the research process. This includes understanding the data lifecycle, selecting appropriate storage solutions, implementing data protection measures, ensuring data accessibility and reproducibility, and ultimately preserving or disposing of the data. Good research data management improves research efficiency, increases data integrity and reuse value, and meets the requirements of research funders and journal providers.
Data sharing and managment short video (from NYU Health Sciences Library)
研究資料是在研究過程中由研究者透過各種方法,例如觀察、蒐集或創造等方式產生的資料。這些資料的主要目的是為了支持或驗證研究者的觀察、發現或結果。
Research data is generated by the researcher in the course of research through various means, such as observing, collecting, or creating. The primary purpose of this data is to support or validate the researcher's observations, findings, or results.
研究資料管理和研究流程之間緊密相關,若能做好研究資料管理,將可以提升您研究中的:
資料安全性和完整性
資料可取用性和可再利用性
研究資助者和期刊出版者的資料管理要求合規性
透明度與可信任度
效率和準確性
Research data management is closely tied to research processes. Effective management of your research data can enhance the following aspects of your work:
Data security and integrity
Data accessibility and reusability
Compliance with data management requirements from research funders and journal publishers
Transparency and trustworthiness
Efficiency and accuracy.
Figure from Dr. Chinn's Slides at https://www.unmc.edu/library/_documents/instruction/2024_4_9_datamgmtlifecycle.pdf