Refereed
N. Kita, A partially ordered structure and a generalization of the canonical partition for general graphs with perfect matchings, Lecture Notes in Computer Science, vol. 7676 , 2012, pp. 85–94. DOI: https://doi.org/10.1007/978-3-642-35261-4_12 *award-winning paper*
N. Kita, Disclosing barriers: a generalization of the canonical partition based on Lovasz’s formulation. Lecture Notes in Computer Science, Vol. 8286, 2013, pp. 402—413. DOI: https://doi.org/10.1007/978-3-319-03780-6_35
N. Kita, An alternative proof of Lovasz’s cathedral theorem. Journal of the Operations Research Society of Japan, Vol. 57, Num. 1, 2014, pp. 15--34. DOI: http://doi.org/10.15807/jorsj.57.15
N. Kita, Structure of towers and a new proof of the Tight Cut Lemma. Lecture Notes in Computer Science, Vol. 10627, 2017, pp. 225-239. DOI: https://doi.org/10.1007/978-3-319-71150-8_20
N. Kita, Nonbipartite Dulmage-Mendelsohn decomposition for Berge duality. Lecture Notes in Computer Science, Vol. 10976, 2018, pp. 293-304. DOI: https://doi.org/10.1007/978-3-319-94776-1_25.
N. Kita: Signed analogue of general Kotzig-Lovasz decomposition. Discrete Applied Mathematics, Vol. 284, pp. 61--70. DOI: https://doi.org/10.1016/j.dam.2020.03.022.
N. Kita: Graft analogue of general Kotzig-Lovasz decomposition. Discrete Applied Mathematics, Vol. 32,2, pp. 355--364, 2022. DOI: https://doi.org/10.1016/j.dam.2022.08.024
N. Kita: Basilica: new canonical decomposition in matching theory. Journal of Graph Theory, Vol. 108, 3, pp. 508--543. DOI: https://doi.org/10.1002/jgt.23190
Nonrefereed (arXiv preprints)
N. Kita: A partially ordered structure and a generalization of the canonical partition for general graphs with perfect matchings. arXiv: 1205.3816, 2012.
N. Kita: A canonical characterization of the family of barriers in general graphs. arXiv:1212.5960, 2012.
N. Kita: The third proof of Lovász's cathedral theorem. arXiv: 1301. 7597, 2013.
N. Kita: A graph theoretic proof of the tight cut lemma. arXiv: 1512.08870, 2015.
N. Kita: The Dulmage-Mendelsohn decomposition for b-matchings. arXiv: 1606.08246, 2016.
N. Kita: Nonbipartite Dulmage-Mendelsohn decomposition for Berge Duality. arXiv: 1708.00503, 2017. (Note: Equivalent to refereed paper [6].)
N. Kita: New canonical decomposition in matching theory. arXiv: 1708.01051, 2017. Note: A fully revised and extended version of refereed paper [1] and arXiv:1205.3816; journal version in refereed paper [8].
N. Kita: Bidirected graphs I: Signed general Kotzig-Lovasz decomposition. arXiv: 1709.07414, 2017. (Note: Equivalent to refereed paper [6]. )
N. Kita: Parity Factors I: General Kotzig-Lovász decomposition for grafts. arXiv:1712.01920, 2017.
N. Kita: Constructive characterization for bidirected analogue of critical graphs I: Principal classes of radials and semiradials. arXiv:2001.00083. 2020.
N. Kita: Bipartite graft I: Dulmage-Mendelsohn decomposition for combs. arXiv:2007.12943, 2020.
N. Kita: Bipartite graft II: Cathedral decomposition for combs. arXiv:2101.06678, 2021.
N. Kita: Constructive characterization of critical bipartite grafts. arXiv:2105.11167, 2021. (Note: Part of the results from arXiv preprint [12] in stand-alone form.)
N. Kita: Bipartite graft III: General case. arXiv: 2108. 00245, 2021.
N. Kita: Tight cuts in bipartite grafts I: Capital distance components. arXiv:2202.00192, 2022.
N. Kita: Constructive characterization for signed analogue of critical graphs II: General radials and semiradials. arXiv:2206.00928, 2022.
N. Kita: Odd cuts in bipartite grafts II: Structure and universality of decapital distance components. arXiv:2503.23973, 2025.