ミトコンドリアにおけるインポート反応のメカニズムは,単離ミトコンドリアと人工的に合成したタンパク質を用いた試験管内アッセイ系で解析されてきました。しかし近年,オミックス解析や顕微鏡技術の向上により,試験管内では解析が難しかった実際の細胞内における前駆体タンパク質の挙動や,インポート反応が阻害されたときの細胞応答などの研究が進んでいます。たとえば, インポート反応の効率は,細胞の老化,活性酸素の蓄積,代謝系の撹乱などにより低下することがあります。また,神経変性疾患ではα-シヌクレイン,アミロイド-ßなどの凝集体が観察されますが,これら凝集タンパク質がミトコンドリアの膜透過装置に沈着することでインポート反応を阻害することもあります。ミトコンドリアにインポートされずサイトゾルに誤局在した前駆体タンパク質は,ユビキチン・プロテアソーム系を軸とした品質管理機構により分解処理されることが分かってきました。そして過剰に蓄積すると,生存に必須な他のタンパク質を巻き込んだ凝集体を形成して,タンパク質の恒常性を破綻させることで,細胞全体の障害を引き起こすと考えられています。しかし,前駆体タンパク質の分解に関わる具体的な因子,細胞障害の詳しい機序に関する研究はまだ始まったばかりであり,充分に解明されていません。ミトコンドリアの機能不全にともなう細胞内現象は,細胞の老化,神経変性疾患との関連から,世界的にも注目されています。
【研究の成果】 本研究では,サイトゾルにおける前駆体タンパク質の挙動を調べるために,出芽酵母のTCA回路の代謝酵素であるクエン酸合成酵素に焦点を絞り,詳しく解析しました。最初に,クエン酸合成酵素のアミノ末端にあるプレ配列を欠損させ,強制的にサイトゾルに誤局在させました。すると,誤局在したクエン酸合成酵素はユビキチンリガーゼSCFUcc1(Skp1-Cdc53-F-box protein Ucc1)によって認識,ユビキチン化され,プロテアソームにより分解されることが分かりました。このユビキチンリガーゼは4種類のタンパク質(Rbx1, Cdc53, Skp1, Ucc1)からなる複合体であり,基質タンパク質を認識するのはFボックスタンパク質の一種であるUcc1です。Fボックスタンパク質は一般的に,基質タンパク質のなかにある連続した数アミノ酸からなるペプチドモチーフを認識します。しかし,Ucc1によるクエン酸合成酵素の認識機構をX線結晶構造解析で調べたところ,Ucc1はペプチドモチーフではなく,クエン酸合成酵素の三次構造(三次元的な立体構造)が組みあがって初めて形成される分子表面を認識するという,ユニークな性質をもつことが分かりました。実際,クエン酸合成酵素の分子表面でUcc1と結合するアミノ酸は,一次構造(アミノ酸配列)では離れた位置にあることも分かりました。また,Ucc1によって認識された状態のクエン酸合成酵素の構造は,活性型のクエン酸合成酵素の構造とも極めて類似していました。すなわち,Ucc1は立体構造が組みあがって活性状態にあるクエン酸合成酵素を認識するものと考えられました(図2)。