Publications

Papers

* Equal contribution, # Corresponding author

2023

30. Structural basis of aggregate binding by the AAA+ disaggregase ClpG

Katikridis P, Simon B, Jenne T, Moon S, Lee C, Hennig J, Mogk A.

J Biol Chem. 2023 [link]


29. Exploring the impact of nucleic acids on protein stability in bacterial cell lysate

Ham S, Lee C#.

BBA Gen Subj. 2023 [link]


28. Temperature matters: bacterial response to temperature change 

Moon S*, Ham S*, Jeong J*, Ku H*, Kim H#,  Lee C#.

J Microbiol. 2023 [link]


27. Optimization of transposon mutagenesis methods in Pseudomonas antarctica 

Kim S,  Lee C#.

Microorganisms 2023 [link]

2022

26. A method to study α-synuclein toxicity and aggregation using a humanized yeast model.

Kim H, Jeong J,  Lee C#.

J Vis Exp. 2022 [link]


25. Cytoplasmic molecular chaperones in Pseudomonas species.

Kim H*, Moon S*, Ham S*, Lee K, Römling U,  Lee C#.

J Microbiol. 2022 [link]


24. ATP-independent chaperones.

Mitra R, Wu K, Lee C, Bardwell JC.

Annual Review of Biophysics. 2022 [link]

2021

23. Stress-responsive periplasmic chaperones in bacteria.

Kim H*, Wu K*, Lee C#.

Front Mol Biosci. 2021 [link]


22. A recently isolated human commensal Escherichia coli ST10 clone member mediates enhanced thermotolerance and tetrathionate respiration on a P1 phage-derived IncY plasmid. 

Kamal SM, Cimdins-Ahne A, Lee C, Li F, Martín-Rodríguez AJ, Seferbekova Z, Afasizhev R, Wami HT, Katikaridis P, Meins L, Lünsdorf H, Dobrindt U, Mogk A, Römling U.

Mol Microbiol. 2021 Feb 115(2):255-271. doi: 10.1111/mmi.14614. [link


2020

21. Why? - Successful Pseudomonas aeruginosa clones with a focus on clone C.

Lee C, Klockgether J, Fischer S, Trcek J, Tümmler B, Römling U.

FEMS Microbiol Rev. 2020 Nov 24;44(6):740-762. doi: 10.1093/femsre/fuaa029. [link]


20. A metabolite binding protein moonlights as a bile-responsive chaperone.

Lee C, Betschinger P, Wu K, Żyła DS, Glockshuber R, Bardwell JC. 

EMBO J. 2020 Oct 15;39(20):e104231. doi: 10.15252/embj.2019104231. [link]


19. A Cyclic di-GMP Network Is Present in Gram-Positive Streptococcus and Gram-Negative Proteus Species.

Liu Y, Lee C, Li F, Trček J, Bähre H, Guo RT, Chen CC, Chernobrovkin A, Zubarev R, Römling U.

ACS Infect Dis. 2020 Oct 9;6(10):2672-2687. doi: 10.1021/acsinfecdis.0c00314. [link]


2019

18. Protein folding while chaperone bound is dependent on weak interactions. 

Wu K, Stull F, Lee C, Bardwell JCA.

Nat Commun. 2019 Oct 23;10(1):4833. doi: 10.1038/s41467-019-12774-6. [link] (F1000Prime recommended)


17. Two FtsH Proteases Contribute to Fitness and Adaptation of Pseudomonas aeruginosa Clone C Strains. 

Kamal SM, Rybtke ML, Nimtz M, Sperlein S, Giske C, Trček J, Deschamps J, Briandet R, Dini L, Jänsch L, Tolker-Nielsen T, Lee C, Römling U. 

Front Microbiol. 2019 Jul 9;10:1372. doi: 10.3389/fmicb.2019.01372. [link]


16. High frequency of double crossover recombination facilitates genome engineering in Pseudomonas aeruginosa PA14 and clone C strains.

Lee C#, Kamal SM, Römling U#. 

Microbiology. 2019 Jul;165(7):757-760. doi: 10.1099/mic.0.000812. [link]


2018

15. Electrostatic interactions are important for chaperone-client interaction in vivo. 

Lee C, Kim H, Bardwell JCA. 

Microbiology. 2018 Jul;164(7):992-997. doi: 10.1099/mic.0.000676. [link]


14. Stand-alone ClpG disaggregase confers superior heat tolerance to bacteria. 

Lee C, Franke KB, Kamal SM, Kim H, Lünsdorf H, Jäger J, Nimtz M, Trček J, Jänsch L, Bukau B, Mogk A, Römling U. 

Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):E273-E282. doi: 10.1073/pnas.1712051115. [link]


2017

13. Bacterial Responses to Glyoxal and Methylglyoxal: Reactive Electrophilic Species.

Lee C, Park C. 

Int J Mol Sci. 2017 Jan 17;18(1):169. doi: 10.3390/ijms18010169. [link]


2016

12. Screening for Escherichia coli K-12 genes conferring glyoxal resistance or sensitivity by transposon insertions. 

Lee C, Kim J, Kwon M, Lee K, Min H, Kim SH, Kim D, Lee N, Kim J, Kim D, Ko C, Park C.

FEMS Microbiol Lett. 2016 Sep;363(18):fnw199. doi: 10.1093/femsle/fnw199. [link]


11. Protein homeostasis-more than resisting a hot bath. 

Lee C#, Wigren E, Lünsdorf H, Römling U#. 

Curr Opin Microbiol. 2016 Apr;30:147-154. doi: 10.1016/j.mib.2016.02.006. [link]


10. Characterization of the Escherichia coli YajL, YhbO and ElbB glyoxalases. 

Lee C*, Lee J*, Lee JY, Park C. 

FEMS Microbiol Lett. 2016 Feb;363(3):fnv239. doi: 10.1093/femsle/fnv239. [link]


2015

9. A novel protein quality control mechanism contributes to heat shock resistance of worldwide-distributed Pseudomonas aeruginosa clone C strains.

Lee C, Wigren E, Trček J, Peters V, Kim J, Hasni MS, Nimtz M, Lindqvist Y, Park C, Curth U, Lünsdorf H, Römling U. 

Environ Microbiol. 2015 Nov;17(11):4511-26. doi: 10.1111/1462-2920.12915. [link]


2014

8. Draft Genome Sequence of Pseudomonas aeruginosa SG17M, an Environmental Isolate Belonging to Clone C, Prevalent in Patients and Aquatic Habitats. 

Lee C, Peters V, Melefors O, Römling U.

Genome Announc. 2014 Mar 20;2(2):e00186-14. doi: 10.1128/genomeA.00186-14. [link]


2013

7. Glyoxal detoxification in Escherichia coli K-12 by NADPH dependent aldo-keto reductases. 

Lee C, Kim I, Park C. 

J Microbiol. 2013 Aug;51(4):527-30. doi: 10.1007/s12275-013-3087-8. [link]


6. Novel regulatory system nemRA-gloA for electrophile reduction in Escherichia coli K-12.

Lee C, Shin J, Park C.

Mol Microbiol. 2013 Apr;88(2):395-412. doi: 10.1111/mmi.12192. [link]


5. Mutations upregulating the flhDC operon of Escherichia coli K-12. 

Lee C, Park C.  

J Microbiol. 2013 Feb;51(1):140-4. doi: 10.1007/s12275-013-2212-z. Epub 2013 Mar 2. [link]


2012

4. Development of a suicidal vector-cloning system based on butanal susceptibility due to an expression of YqhD aldehyde reductase. 

Lee C, Park C.

J Microbiol. 2012 Apr;50(2):249-55. doi: 10.1007/s12275-012-1438-5. [link]


3. Genomic rearrangements leading to overexpression of aldo-keto reductase YafB of Escherichia coli confer resistance to glyoxal. 

Kwon M, Lee J, Lee C, Park C.

J Bacteriol. 2012 Apr;194(8):1979-88. doi: 10.1128/JB.06062-11. [link]


2010

2. Transcriptional activation of the aldehyde reductase YqhD by YqhC and its implication in glyoxal metabolism of Escherichia coli K-12. 

Lee C, Kim I, Lee J, Lee KL, Min B, Park C. 

J Bacteriol. 2010 Aug;192(16):4205-14. doi: 10.1128/JB.01127-09. [link]


2007

1. Screening of genes related to methylglyoxal susceptibility.

Kim I, Kim J, Min B, Lee C, Park C. 

J Microbiol. 2007 Aug;45(4):339-43. [link]


* Equal contribution, # Corresponding author


Patents


2. Suicidal Vector Comprising YqhD Aldehyde Reductase Gene For Cloning Recombinant DNA Molecule 

Lee C & Park C. (2010), 10-2010-0114850 (Korea)



1. Variants of YqhC Protein, Nucleotide Sequence Encoding the Same and Host Cells Over-Expressing YqhD Protein Containing the Same Nucleotide Sequence

Lee C, Lee J & Park C. (2009), 10-2009-0012265 (Korea)