Group Members

A PDF version of my CV including supervision experience can be downloaded here.

I supervise members of the Delft Institute of Applied Mathematics working on nonlinear (stochastic) partial differential equations. Below you can find information on the research of (former) group members that I supervised while affiliated at TU Delft or TU Munich and  of myself while affiliated at TU Delft.

Current/future group members

Former group members


MSc students

BSc students

Supervision at the Technical University of Munich

Publications of Group Members (while affiliated with TU Delft or co-supervised at TU Munich)

G19) Classical solutions to the thin-film equation with general mobility in the perfect-wetting regime (M.V.G. and Anouk C. Wisse)

    submitted, arXiv:2310.20400 (2023) (40 pages)

G18) Solutions to the stochastic thin-film equation for the range of mobility exponents n∈(2,3) (Max Sauerbrey) (34 pages)

G17) Solutions to the stochastic thin-film equation for initial values with non-full support (Konstantinos Dareiotis, Benjamin Gess, M.V.G., and Max Sauerbrey)

     submitted, arXiv:2305.06017 (2023) (36 pages)

G16) Droplet motion with contact-line friction: long-time asymptotics in complete wetting (Lorenzo Giacomelli, M.V.G., and Dirk Peschka)

     to appear in Proc. R. Soc. Lond., arXiv.2302.03005 (2023) (20 pages)

G15) On the trajectory of a light small rigid body in an incompressible fluid (Marco Bravin and Šárka Nečasová)

      arXiv:2211.15610 (2022) (21 pages)

G14) On the velocity of a small rigid body in a viscous incompressible fluid in dimension two and three (Marco Bravin and Šárka Nečasová)

      arXiv:2208.12351 (2022) (13 pages)

G13) Ad hoc test functions for homogenization of compressible viscous fluid with application to the obstacle problem in dimension two (Marco Bravin)

      arXiv.2208.11166 (2022) (22 pages)

G12) Well-posedness of a parametrically forced nonlinear Schrödinger equation driven by translation-invariant noise (with Rik Westdorp and Joris van Winden)

      submitted, arXiv:2208.01945 (2023) (25 pages)

G11) Fast rotating non-homogeneous fluids in thin domains and the Ekman pumping effect (Marco Bravin and Francesco Fanelli)

      arXiv:2205.14524 (2022) (42 pages)

G10) Higher order moments for SPDE with monotone nonlinearities (M.V.G., Jochem Hoogendijk, and Mark C. Veraar)

      submitted, arXiv:2203.15307 (2022) (30 pages)

G9) Dirichlet form analysis of the Jacobi process (Martin Grothaus and Max Sauerbrey)

      to appear in Stoch. Process. Appl.; arXiv:2111.01693 (2022) (34 pages) 

G8) Martingale solutions to the stochastic thin-film equation in two dimensions (Max Sauerbrey)

      to appear in Ann. Henri Poincaré B, arXiv:2108.05754 (2021) (39 pages)

G7) Multiscale analysis for traveling-pulse solutions to the stochastic FitzHugh-Nagumo equations (M.V.G., Katharina Eichinger, and Christian Kuehn)

      Ann. Appl. Probab. 32(5) 3229-3282 (2022) (54 pages); arXiv:2002.07234 (2021) (45 pages)

G6) The Cox-Voinov law for traveling waves in the partial wetting regime (M.V.G. and Anouk C. Wisse)

      Nonlinearity 35(7) 3560 (2022) (33 pages); arXiv:2107.01974 (2022) (24 pages)

G5) Non-negative Martingale Solutions to the Stochastic Thin-Film Equation with Nonlinear Gradient Noise (M.V.G., Konstantinos Dareiotis, Benjamin Gess, and Günther Grün)

Arch. Rational Mech. Anal. 242(1) 179-234 (2021), link to view-only version (free of charge) (56 pages), arXiv:2012.04356 (2020) (50 pages)

G4) The stochastic thin-film equation: existence of nonnegative martingale solutions (M.V.G. and Benjamin Gess)

      Stoch. Process. Appl. 130(12): 7260-7302 (2020) (43 pages); arXiv:1904.08951 (2020) (38 pages)

G3) Towards sample path estimates for fast-slow stochastic partial differential equations (M.V.G., Christian Kuehn, and Anne Pein)

      European J. Appl. Math., 30(5): 1004-1024 (2019) (21 pages)

G2) Stability of receding traveling waves for a fourth order degenerate parabolic free boundary problem (M.V.G., Slim Ibrahim, and Nader Masmoudi)

      Adv. Math., 347:1173 – 1243 (2019) (71 pages); arXiv:1704.06596 (2018) (54 pages)

G1) Variety of unsymmetric multibranched logarithmic vortex spirals (M.V.G. and Volker Elling)

      European J. Appl. Math., 30(1):23–38 (2019) (16 pages)