What is Life? 

The study of life is the domain of biology as a natural discipline. Biology examines all living organisms, and focuses on structure, function, growth, evolution, distribution, as well as the taxonomy of life forms. Life itself is hard to define, because there is such an extraordinary diversity in its manifestations. It is more like a process, rather than a substance or state. Is it possible to develop a definition for life? Is there something that is common to all life? A good definition must be broad enough to encompass all known life forms, as well as leave room for the forms of life that we probably find elsewhere in the universe. What about precursor or hybrid forms of life, like viruses? And what about artificial life? Furthermore, many properties of living things (for example, movement, orderliness, or energy use) can also occur  in non-living things. Wind moves, crystals grow, and fire uses energy, but we do not consider these processes to be alive. 

Is it possible that a computer or a network develops self-awareness ("wakes up") and has intelligence, but there is no underlying biological life? 

History

Life developed early in the history of the planet; it is worthwhile to review the timeframes.

Most scientists today believe that life arose spontaneously from non-living matter. How exactly this happens is still a mystery, and even today many religious people believe that life could only have come into existence through an act of creation, based on a supreme being of some kind. Other scientists defend the "panspermia hypothesis," which claims that life on earth arrived from other planets. Both of these alternatives circumvent the question of how living matter can emerge from non-living matter.

Building Blocks

The most fundamental property of life is a dependence on organic chemistry, a chemistry based on organic compounds (molecules built around carbon). There are four general classes of organic compounds:

Organic compounds have complex properties. The first step toward the origin of life must involve the formation of organic compounds from inorganic ones. However, organic compounds are generally produced only by living things, and as far as we know, the early earth was entirely inorganic. In order to solve this problem, experimental science had to step in. A now-classic experiment by Stanley Miller in 1953 demonstrated that it is possible and relatively easy to synthesize many organic compounds under conditions simulating those thought to have existed on the early earth. Once these organic compounds are present, they can interact and form the building blocks of life. Living systems have the characteristic that they organize in a hierarchical fashion, from molecules to cells to organisms to communities of species to ecosystems.

Functions and Principles

Something is considered to be alive when it exhibits all or most of the following traits:

These complex processes are called physiological functions. They have underlying physical and chemical bases, and they consist of signaling and control mechanisms that are essential to maintaining life. These seven traits can be unified into three principles that operate across all levels of organization and form a useful way to look at systems as a whole.

Viruses

Viruses have genes, but no cell structure. They are genetic replicators rather than forms of life. They are mechanisms at the edge of life: they possess genes, evolve by natural selection, and replicate by creating multiple copies of themselves through self-assembly. They have no metabolism and they require a host cell to make new versions of themselves. The existence of viruses indicates that life could have started as a process by which organic molecules begin to assemble themselves.

Philosophical Approaches to the Definition of Life

There have been three main philosophical approaches to the problem of defining life:

As we enter a new era of space travel and artificial intelligence, the search for a better understanding of life will most likely transform our existing approaches. Future research will integrate a view of organisms and their action with evolutionary theory and complex systems theory. We are still far from understanding how life can emerge from inorganic matter, and in how many forms this emergence can occur. In his book, "The Way of the Cell," Franklin Harold suggests a definition of life that is useful to capture many aspects of life, and yet broad enough for future discoveries.

Living organisms are autopoietic systems: self-constructing, self-maintaining, energy-transducing autocatalytic entities in which information needed to construct the next generation of organisms is stabilized in nucleic acids that replicate within the context of whole cells and work with other developmental resources during the life-cycles of organisms, but they are also systems capable of evolving by variation and natural selection: self-reproducing entities, whose forms and functions are adapted to their environment and reflect the composition and history of an ecosystem.”

Harold, F.M., 2001. The Way of the Cell: Molecules, Organisms and the Order of Life, New York: Oxford University Press. Page 232.

External links: