Any labyrinth in a group can be chosen as the base starting point to look at these relationships, but the standard arrangement of the group begins with the numerically lowest circuit sequence string in the base position.
Some labyrinths are self-dual or self-transpose. (See Dual, Transpose, Complement topic for additional information.)
Base/Dual:
Serpentine 7, OM 7.1, 0|1234567|8, 1s.7s
1.7 (1i.7) 1.7.6.0 SATBsd [7]
Transpose/Complement:
Reverse Serpentine 7, OM 7.42, 0|7654321|8, 7s.1s
1.7 (7o.1) 1.7.6.2 SATUsd [1]
Base:
S4+M (aka S4+RS3), OM 7.2, 0|1234765|8, 1sn.5s
1.7 (1i.5) 1.7.5.2 SATBn [5]
Dual:
M+S4 (aka RS3+S4), OM 7.15, 0|3214567|8, 1s.7ns
1.7 (3o.7) 1.7.5.2 SATBn [5]
Transpose:
S3−IS4, OM 7.28, 0|5674321|8, 5s.1sn
1.7 (5i.1) 1.7.5.3 SATUn [1]
Complement:
IS4−S3, OM 7.41, 0|7654123|8, 7ns.3s
1.7 (7o.3) 1.7.5.3 SATUn [1]
Base:
S3+M+C (aka S2+RDM), OM 7.3, 0|1236547|8, 1sn.7sn
1.7 (1i.7) 1.7.4.2 SATBn [5]
Dual:
C+M+S3 (aka RDM+S2), OM 7.9, 0|1432567|8, 1ns.7ns
1.7 (1i.7) 1.7.4.2 SATBn [5]
Transpose:
C−IM−IS3 (aka IRDM−IS2), OM 7.34, 0|7456321|8, 7sn.1sn
1.7 (7o.1) 1.7.4.4 SATUn [1]
Complement:
IS3−IM−C (aka IS2−IRDM), OM 7.40, 0|7652341|8, 7ns.1ns
1.7 (7o.1) 1.7.4.4 SATUn [1]
Base/Dual:
Transpose/Complement:
f
Base:
Dual:
Transpose:
Complement:
Base:
Dual:
Transpose:
Complement:
Base:
Dual:
Transpose:
Complement:
Base:
Dual:
Transpose:
Complement:
Base:
Dual:
Transpose:
Complement:
Base:
Dual:
Transpose:
Complement:
Base/Dual:
Transpose/Complement:
Base/Dual:
Transpose/Complement:
Base/Dual:
Transpose/Complement: