Preprint:
2) H. Buragohain, R. C. Deka, K. Talukdar; Intermolecular Interactions of Nitrogen-Substituted Chalcogen Heterocycles: From Electron Density to Binding Energy Landscapes; ChemRxiv. 2025 [DOI:10.26434/chemrxiv-2025-f91md]
1) H. Buragohain, V. Kumar, R. C. Deka, K. Talukdar; Electronic Structure Insights into Noncovalent Interactions between Aromatic Heterocycles and Formic Acid; SSRN 2024; http://dx.doi.org/10.2139/ssrn.4728647
Peer-Reviewed Publications:
17) H. Buragohain, R.C. Deka, K. Talukdar; Theoretical insights into chalcogen bonding assisted anion recognition; J. Chem. Sci. (2025) [ChemRxiv. 2025; doi:10.26434/chemrxiv-2025-j5w99]
16) K. Talukdar, M. K. Nayak, N. Vaval, and S. Pal; Relativistic Extended-Coupled-Cluster Calculations of P,T-Odd Sensitivity Parameters for Diatomic Molecules; J. Chem. Theory Comput. 21(11), 5481 (2025).
https://doi.org/10.1021/acs.jctc.5c00329
15) K. Talukdar, M. K. Nayak, S. Pal; Spectroscopic Properties of SrH from Relativistic Coupled-Cluster Calculations; J. Chem. Sci. (2025) [preprint doi:10.26434/chemrxiv-2024-p504f]
14) K. Talukdar, V. Avasare, S. Pal; P,T-odd Sensitivity Parameters in Open-Shell Molecules from Relativistic Coupled-Cluster Theory; in S Pal, V. Srivastava, V. Avasare, J. Maruani (eds). Theoretical Methods, Algorithms, and Applications of Quantum Systems in Chemistry, Physics, and Biology, QSCP 2023. Progress in Theoretical Chemistry and Physics, vol 35., pp 65-88 (2025) Springer, Cham.
https://doi.org/10.1007/978-3-031-85167-4_3
13) H. Buragohain, and K. Talukdar; Exploring computational chemistry with ChemCompute; Reson. 29, 1095 (2024).
https://www.ias.ac.in/describe/article/reso/029/08/1095-1110
12) H. Buragohain, K. Talukdar, M. K. Nayak; Permanent electric dipole moment of diatomic molecules using relativistic extended-coupled-cluster method; Theor. Chem. Acc. 143, 43 (2024). (https://rdcu.be/dHB20)
https://doi.org/10.1007/s00214-024-03117-w
11) K. Talukdar, H. Buragohain, M. K. Nayak, N. Vaval and S. Pal; Relativistic coupled-cluster study of SrF for low-energy precision tests of fundamental physics; Theor. Chem. Acc. 142, 15 (2023).
https://doi.org/10.1007/s00214-023-02953-6
10) S. Haldar, K. Talukdar, M. K. Nayak, and S. Pal; Molecular frame dipole moment of diatomic molecules within relativistic coupled-cluster framework: A comparative study of expectation-value versus energy derivative approach; Int. J. Quantum Chem. 121, e26764 (2021).
https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.26764
9) K. Talukdar, M. K. Nayak, N. Vaval, and S. Pal; Role of electron correlation in the P,T-odd effects of CdH: A relativistic coupled-cluster investigation; Phys. Rev. A 101, 032505 (2020).
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.032505
8) K. Talukdar, M. K. Nayak, N. Vaval and S. Pal; Electronic structure parameter of nuclear magnetic quadrupole moment interaction in metal monofluorides; J. Chem. Phys. 153, 184306 (2020).
https://aip.scitation.org/doi/full/10.1063/5.0028669
7) K. Talukdar, M. K. Nayak, N. Vaval, and S. Pal; Relativistic coupled-cluster study of BaF in search of CP violation; J. Phys. B: At. Mol. Opt. Phys. 53, 135102 (2020).
https://iopscience.iop.org/article/10.1088/1361-6455/ab84c8/meta
6) H. Pathak, S. Sasmal, K. Talukdar, M. K. Nayak, N. Vaval, and S. Pal; Relativistic double-ionization equation-of-motion coupled-cluster method: Application to low-lying doubly-ionized states; J. Chem. Phys. 152, 104302 (2020).
https://aip.scitation.org/doi/full/10.1063/1.5140988
5) K. Talukdar, M. K. Nayak, N. Vaval, and S. Pal; Nuclear parity- and time-reversal symmetry violation in the 201HgH molecule; Phys. Rev. A 99, 032503 (2019).
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.032503
4) K. Talukdar, M. K. Nayak, N. Vaval, and S. Pal; Relativistic coupled-cluster investigation of parity (P) and time-reversal (T) symmetry violations in HgF; J. Chem. Phys. 150, 084304 (2019).
https://aip.scitation.org/doi/full/10.1063/1.5083000
3) K. Talukdar, S. Sasmal, M. K. Nayak, N. Vaval, and S. Pal; Correlation trends in the magnetic hyperfine structure of atoms: A relativistic coupled-cluster case study; Phys. Rev. A 98, 022507 (2018).
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.022507
2) S. Sasmal, K. Talukdar, M. K. Nayak, N. Vaval, and S. Pal; Electron-nucleus scalar-pseudoscalar interaction in PbF: Z-vector study in the relativistic coupled-cluster framework; Mol. Phys. 115, 2807 (2017).
https://www.tandfonline.com/doi/full/10.1080/00268976.2017.1332396
1) S. Sasmal, K. Talukdar, M.K. Nayak, N. Vaval, and S. Pal; Calculation of hyperfine structure constants of small molecules using Z-vector method in the relativistic coupled-cluster framework; J. Chem. Sci. 128, 1671 (2016).