コンピュータを用いて化合物の様々な特性を予測するAI技術を開発しています。例えば、疾患の原因となるタンパク質に結合する化合物を探索したり、薬を服用した際の体内動態を予測したり、薬剤の服用性向上を目的とした苦味・甘みを予測することを目的としています。化合物の化学構造から、創薬・食品・飲料などへの応用に向けた多岐にわたる技術の開発に取り組んでいます。
Hiroaki Iwata†, Taichi Nakai†, Takuto Koyama, Shigeyuki Matsumoto, Ryosuke Kojima*, Yasushi Okuno*, "VGAE-MCTS: a New Molecular Generative Model combining Variational Graph Auto-Encoder and Monte Carlo Tree Search," Journal of chemical information and modeling, 63.23: 7392-7400, (2023). Full Text
Takuto Koyama, Shigeyuki Matsumoto*, Hiroaki Iwata, Ryosuke Kojima, Yasushi Okuno*, "Improving Compound-Protein Interaction Prediction by Self-Training with Augmenting Negative Samples," Journal of chemical information and modeling, 63.15: 4552–4559, (2023). Full Text
Biao Ma, Kei Terayama, Shigeyuki Matsumoto, Yuta Isaka, Yoko Sasakura, Hiroaki Iwata, Mitsugu Araki, Yasushi Okuno, "Structure-based de novo molecular generator combined with artificial intelligence and docking simulations," Journal of chemical information and modeling. 61.7 (2021): 3304-3313. Full Text
Ryosuke Kojima, Shoichi Ishida, Masateru Ohta, Hiroaki Iwata, Teruki Honma, Yasushi Okuno, "kGCN: a graph convolutional network framework for cheminformatics," Journal of Cheminformatics, 12, 32 (2020). Full Text
Hiroaki Iwata, Ryosuke Kojima, Yasushi Okuno, "An in silico approach for integrating phenotypic and target-based approaches in drug discovery," Molecular Informatics, (2019). Full Text