薬物のヒトin vivoにおける体内動態や薬効・毒性発現を時空間的かつ定量的に予測するためのシステム開発に取り組んでいます。このシステムは、創薬過程で評価されるin vitroデータや文献情報を有効活用し、より精度の高い予測を支援することを目的としています。
Yoshinobu Igarashi, Ryosuke Kojima, Shigeyuki Matsumoto, Hiroaki Iwata, Yasushi Okuno, and Hiroshi Yamada*, "Developing a GNN-based AI model to predict mitochondrial toxicity using the bagging method, "The Journal of Toxicological Sciences, 49.3: 117-126 (2024). Full Text
Hiroaki Iwata*, Tatsuru Matsuo, Hideaki Mamada, Takahisa Motomura, Mayumi Matsushita, Takeshi Fujiwara, Kazuya Maeda, and Koichi Handa*, "Predicting total drug clearance and volumes of distribution using the machine learning mediated multimodal method through the imputation of various non-clinical data," Journal of chemical information and modeling, 62.17 (2021): 4057–4065. Full Text
Hiroaki Iwata, Tatsuru Matsuo, Hideaki Mamada, Takahisa Motomura, Mayumi Matsushita, Takeshi Fujiwara, Kazuya Maeda, Koichi Handa, "Prediction of human PK parameters using non-clinical data and chemical structure formula with multimodal machine learning," Journal of Pharmaceutical Sciences, 110(4), 1834-1841, (2021). Full Text