International Journal

[18] Lee D. G., Lee, D. H., Kwon D. S., Ryu J. H., Kim, H. MonoEndoCal: Autonomous Calibration for Tendon-Driven Endoscopic Robots Using Monocular Vision. IEEE Transactions on Automation Science and Engineering. (Under Review)

[17] Kim, H., Lee, D. H., Kong D., Kwon D. S., Cheon B. EndoForce: A Human-Like Axial Force Sensing Device Inspired by Clinical Insertion Motion for Endoscopic Robotic Systems. The International Journal of Medical Robotics and Computer Assisted Surgery. (Under Review)

[16] Hari, K., Chen Z., Kim, H., Goldberg, K. STITCH 2.0: Extending Augmented Suturing with EKF Needle Estimation and Thread Slack Management. IEEE Robotics and Automation Letters. (Under Review)

[15] Wilbert Peter Empleo, Kim, Y., Kim, H., Thiusius Rajeeth Savarimuthu, Iturrate, I. Safe Uncertainty-Aware Learning of Robotic Suturing. IEEE Transactions on Medical Robotics and Bionics . (Under Review)

[14] Kim, Y., Iturrate, I., Sloth, C., & Kim, H. (2025). Safety-Ensured Robotic Control Framework for Cutting Task Automation in Endoscopic Submucosal Dissection. IEEE Access , vol. 13, pp. 102803-102814.

[13]  Nguyen, L. V.*, Kim, H.*, Nguyen, K. T., Alambeigi, F., & Ho, V. A. (2025). Adaptable cavity exploration: Bioinspired vibration-propelled PufferFace Robot with a morphable body. Science Advances, 11(18), eads3006. (*: Co-First author)

[12] Kamaraj, M., Rezayof, O., Barer, A., Kim, H., Moghimi, N., Joshi, A., ... & John, J. V. (2025). Development of silk microfiber-reinforced bioink for muscle tissue engineering and in situ printing by a handheld 3D printer. Biomaterials Advances, 166, 214057. 

[11] Kim, H. (2024). Design and Analysis of Additional Tendon Path for Determining Bending Shape in Hyper-Redundant Manipulator with Rolling Joints. Applied Sciences, 14(23), 10823.

[10] Yang, S.*, Kim, H.*, Rezayof, O., Bonyun, J., John, J. V., Dokmeci, M. R., ... & Alambeigi, F. (2024). Development and Quantitative Evaluation of a Novel Autonomous In Situ Bioprinting Surgical Robotic Framework for Treatment of Volumetric Muscle Loss Injuries. IEEE Transactions on Automation Science and Engineering. (*: Co-First author)

[9] Kim, H., Kara, O. C., & Alambeigi, F. (2023). A soft and inflatable vision-based tactile sensor for inspection of constrained and confined spaces. IEEE Sensors Journal

[8] Kim, H., You, J. M., Kyung, K. U., & Kwon, D. S. (2023). Endoscopic surgery robot that facilitates insertion of the curved colon and ensures positional stability against external forces: K‐COLON. The International Journal of Medical Robotics and Computer Assisted Surgery, 19(3), e2493. 

[7] Kim, H., You, J. M., Hwang, M., Kyung, K. U., & Kwon, D. S. (2023). Sigmoidal auxiliary tendon-driven mechanism reinforcing structural stiffness of hyper-redundant manipulator for endoscopic surgery. Soft Robotics, 10(2), 234-245. 

[6] Oh, B., Lim, Y. S., Ko, K. W., Seo, H., Kim, D. J., Kong, D., ... & Park, S. (2023). Ultra-soft and highly stretchable tissue-adhesive hydrogel based multifunctional implantable sensor for monitoring of overactive bladder. Biosensors and Bioelectronics, 225, 115060. 

[5] Lee, D. G., Baek, D., Kim, H., Kim, J., & Kwon, D. S. (2023). Learning-based discrete hysteresis classifier using wire tension and compensator for flexible endoscopic surgery robots. International Journal of Precision Engineering and Manufacturing, 24(1), 83-94. 

[4] You, J. M., Kim, H., Kim, J., & Kwon, D. S. (2021). Design and analysis of high-stiffness hyperredundant manipulator with sigma-shaped wire path and rolling joints. IEEE Robotics and Automation Letters, 6(4), 7357-7364. 

[3] Kim, H., Kim, J., You, J. M., Lee, S. W., Kyung, K. U., & Kwon, D. S. (2021). A sigmoid-colon-straightening soft actuator with peristaltic motion for colonoscopy insertion assistance: Easycolon. IEEE Robotics and Automation Letters, 6(2), 3577-3584. 

[2] Kim, H., Hwang, M., Kim, J., You, J. M., Lim, C. S., & Kwon, D. S. (2020). Effect of backlash hysteresis of surgical tool bending joints on task performance in teleoperated flexible endoscopic robot. The International Journal of Medical Robotics and Computer Assisted Surgery, 16(1), e2047. 

[1] Kim, C. K., Chung, D. G., Hwang, M., Cheon, B., Kim, H., Kim, J., & Kwon, D. S. (2019). Three-degrees-of-freedom passive gravity compensation mechanism applicable to robotic arm with remote center of motion for minimally invasive surgery. IEEE Robotics and Automation Letters, 4(4), 3473-3480.