Ultrafast Spectroscopy 

We are looking for motivated and excellent new members for our research group!

2 positions are available: 1 PhD student and 1 postdoc 


Profile desired:


The research project is funded by the Swiss National Science foundation on the topic of

"Transient phases of correlated excitons in small band gap semiconductors".

Starting date is summer or autumn 2024. Duration is up to 4 years for the PhD student position and up to 3 years for the postdoc position.


We offer you a good environment at the University of Fribourg with state-of-the-art equipment. You will expand your expertise in the field listed above.


If you are interested, contact claude.monney@unifr.ch.

Our interest is to understand the origin of the physical properties of modern materials. The goal is to increase the fundamental knowledge in the physics of solid state, to help designing new materials with defined properties and possibly to control material and their properties with external stimuli like light pulse or mechanical strain.

For this purpose, we are using a variety of experimental techniques that grant us access to the electronic structure of materials, in our laboratory at the University of Fribourg 

All these techniques are surface sensitive, because of the small escape depth of electrons.

In addition, we also use Resonant Inelastic X-ray Scattering to study the electronic and magnetic structure of materials using synchrotron radiation. This is a powerful technique that offers more bulk sensitivity.

Our group is also expert in the use of time-resolved spectroscopies using a stroboscopic pump-probe scheme: an intense pump pulse (specific to the material investigated) excites matter out of equilibrium and a probe pulse (specific to the used spectroscopy) arriving a few tens of femtosecond later performs the desired spectroscopy. With ultrafast lasers, we study the real time dynamics of new materials and resolve the evolution of electrons on the femtosecond time scale. With this approach, we can further understand the complex interplay of the different degrees of freedom that are the key actors in solid state matter: electrons, atoms and spins. This spectroscopic probe gives access to the transient electronic structure of complex materials. 

Our research activities focuses on a class of materials called strongly electron correlated materials. For these systems, a mean-field description of their electronic properties fails, because of the strong electron-electron interactions.  Their complexity leads to rich phase diagram which can easily be tuned e.g. by chemical parameters.

We have the privilege of having an artist who drew a comic book on our lab. Please have a look at the full version.