Sawada Lab.

Research

土は,土粒子,水,空気,からできており,これらの構成要素の比率によって,工学的な性質が様々に変化する材料です。降雨による斜面崩壊や,廃棄物処分場の浸透など,不飽和土の力学は,地盤の防災・環境問題に取り組む上で欠かせない,地盤工学の重要分野です。本研究室では,不飽和地盤の水分・熱の移動と変形について,実験と数値解析により研究しています。

Soil comprises soil particles, water, and air. The engineering properties of soil are significantly affected by the ratio of these components. Unsaturated soil mechanics is vital to geotechnical engineering, as it is necessitated for managing problems associated with disaster prevention and the geoenvironment, such as rainfall-induced slope failures and seepage in waste facilities. We aim to investigate the water/heat transfer and deformation of unsaturated soils via experiment and numerical analysis.

不飽和地盤の水分・熱移動の評価

Water and heat transfer in unsaturated soil

土の強度・変形特性は,水分量に大きく依存するため,地盤内の水分量を予測することはとても重要です。土の保水性は間隙構造と関係し,不飽和状態での透水係数は水分量に依存して数オーダー変化します。本研究室では,土の浸透特性を室内試験で評価し,数値解析で不飽和地盤の水分移動を予測する研究に取り組んでいます。地盤の浅いところでは,水分は液体と水蒸気の二つの形態で存在し,相変化に伴って熱移動も起こります。こうした複雑な水分と熱の同時移動のモデルについても研究を進めています。

The distribution of water content distribution in soil must be predicted because the strength and deformation properties of soil are significantly affected by water content. Soil water retention is associated with the pore structure, and the coefficient of permeability changes by several orders of magnitude with water content under unsaturated conditions. We aim to numerically predict water transfer in unsaturated soil based on hydraulic properties measured from laboratory tests. Near the ground surface, pore water exists in liquid and vapor forms, and the phase change involves heat transfer. Additionally, we aim to model the complex simultaneous transfer of water and heat.

Testing apparatus to measure water retention curves

Evaporation test and numerical analysis

土の保水性を利用した雨水の浸透制御

Water shielding systems using soil water retention

降雨の浸透抑制は,遮水シート等の人工材料を使った方法もありますが,地盤材料を使った方法も提案されています。砂と礫の層境界で生じる遮水現象は,キャピラリーバリアと呼ばれ,主に廃棄物処分場への適用を目的に研究されています。自然材料を使った持続可能な方法として,SDGsの観点からも注目されています。本研究室では,降雨実験によるキャピラリーバリアの観察や,その再現解析を行うことにより,遮水の本質的な仕組みとバリアの設計方法について研究をしています。

月刊誌 Wedgeで紹介されました

Rain-water shielding systems using geomaterials have been proposed, in addition to those using artificial materials, such as liner sheets. Water diversion at the contact between sand and gravel layers is referred to as a capillary barrier, which has been investigated for application in waste facilities. The capillary barrier has garnered attention as a sustainable water-shielding system that uses natural materials, which complies with the concept of SDGs. We aim to elucidate the essential mechanism of water diversion of the capillary barrier and the barrier design via rainfall model tests and numerical analysis.

Rainfall test to observe capillary barrier

Burial mound resotred using capillary barrier

土の乾燥過程の力学

Soil mechanics in drying process

不飽和土の力学は,主に湿潤過程に焦点を当てて構築されてきており,乾燥過程はまだ研究事例が多くありません。しかし,豪雨や干ばつといった極端な気候が予測される将来に備え,湿潤と乾燥の両過程での土の挙動を理解する必要があります。本研究室では,乾燥過程の挙動のひとつである,乾燥亀裂について研究しています。土の乾燥収縮が妨げられたときに,内部に引張応力が生じることによって亀裂が発生します。亀裂発生過程の土の内部応力を実測する新しい室内試験を開発し,モデル化に取り組んでいます。

Unsaturated soil mechanics has been developed by focusing on soil behavior during the wetting process instead of the drying process. However, understanding soil behavior in both processes is necessary to prepare for future extreme climates, such as heavy rainfall and drought. We aim to investigate desiccation cracking caused by internal stress development when shrinkage is restricted during the drying process. We developed a new laboratory test to measure the internal stress during the cracking process. Furthermore, we aim to create a model for predicting desiccation cracking using measured internal stresses.

Mechanism of desiccation crack

Internal stress measured with new laboratory test

土中空間の温度環境の評価

Temperature in underground spaces

土は断熱性が高い材料であるため,土中空間は大気に比べて温度変化が小さい環境ですが,浅い場合は大気の温度変化の影響を受けます。土中空間の温度変化は,土の文化財にとっては深刻な劣化をもたらす要因になることもあります。例えば,古墳の石室内の温度変化に伴う結露は,壁画や埋葬品を傷めます。本研究室では,土の熱的性質を室内試験で評価し,数値解析で土中空間の温度と結露の環境予測に取り組んでいます。実際の古墳で温度のモニタリングを行い,温度の計算値と比較して,解析モデルの妥当性検証に取り組んでいます。

The temperature change in underground spaces is less significant than that in the atmosphere because soil is a high-heat-insulation material. However, the ground temperature in shallow zones is affected by atmospheric temperature changes, which can result in severe damage to underground cultural heritage sites. For example, dew condensation caused by temperature changes in masonry burial chambers can damage mural paintings and burial accessories. We aim to numerically predict the hydrothermal environment in underground spaces based on soil thermal properties measured from laboratory tests. We are currently performing temperature monitoring in a burial chamber to validate the numerical model by comparing measured and calculated temperatures.

Temperature monitoring in a burial chamber

Measured temperatures

不飽和盛土の動的挙動の評価

Seismic behavior of unsaturated embankments

不飽和土は,サクションによる引張強度を持つため,盛土表層では,せん断破壊と引張破壊の二つの破壊モードを考える必要があります。本研究室では,不飽和土の引張試験の開発と,遠心模型実験と再現解析を用いた不飽和盛土の動的挙動を研究しています。また,地震防災は文化財に対しても重要な課題になってきています。例えば,古墳は不飽和盛土の中に石積構造物がありますが,石材間のせん断強度が盛土の耐震性に大きく影響することが明らかになりました。そこで,非破壊での石材表面の印象とせん断強度の推定にも取り組んでいます。

Two failure modes, i.e., shear and tensile, must be considered near the surface of embankments because unsaturated soil exhibits tensile strength developed from suction. We aim to develop tension tests for unsaturated soil and clarify the seismic behavior of unsaturated embankments via centrifuge model tests and numerical analysis. Earthquake disaster prevention has become an important issue in the preservation of cultural heritage. For example, the seismic resistance of burial mounds with masonry structures in unsaturated mounds is significantly affected by the shear strength between stones. Hence, we aim to develop a nondestructive shear strength estimation method using stone surface impressions.

Centrifuge model test using a burial mound model

Tensile stress distribution

雨水浸透に伴う斜面の変形評価

Slope deformation caused by rainfall infiltration

不飽和状態の土中水には,サクション(負の間隙水圧)がはたらいています。土粒子は,このサクションによって結びついていますが,湿潤によって土粒子間力が弱まります。これは,降雨による斜面崩壊の一因です。本研究室では,不飽和土の変形特性を調べる室内試験と,浸透-変形解析により,変形のメカニズムと対策を研究しています。実践として,降雨で被災した酒船石遺跡(奈良県)の修復に取り組みました。軟弱な遺構土が崩壊の主要因であることを示し,効果的な修復方法を提案しました。

Suction (i.e., negative porewater pressure) develops in unsaturated soil. Soil particles are bonded by suction, however the interparticle force decreases with moisture increase. This contributes to slope failure during rainfall. We aim to study the deformation mechanism induced by rainfall infiltration and protections by means of laboratory tests to measure deformation properties of unsaturated soil and seepage-deformation analyses. We practically used these methods to restore the Sakafuneishi site in Nara prefecture damaged by rainfall. Our results showed that the soft clayey soil in the site greatly contributes to the slope failure, and thus an effective restoration method was proposed based on the failure mechanism.

Slope failure in the Sakafuneishi site

Numerically predicted deformation of the slope