Lectures : Tuesday at 3:00 PM, Wednesday and Friday at 2:00 PM.
Discussion/Office Hour : By Appointment
Mid Semester Examinations - 30% (15%+15%)
End Semester Examination - 30%
Class Performance - 20%
Minor Project - 20%
Topics to be covered:
Modules over Commutative rings : Quick Review of Vector Spaces, Rings, Principal Ideal domains, and Examples, Definition and Examples of Modules, Quotient Modules and Module homomorphisms, Isomorphism Theorems, direct sums, finitely generated Modules, Free Modules and bases, Simple Modules, Semi simple Modules, Schur’s Lemma.Modules with chain conditions : Notherian and artinian modules and rings-Hilbert basis theorem, Wedderburn-Artin theorem, Wedderburn Decomposition of group algebras.Modules over a Principal Ideal Domain : Structure of finitely generated modules over PID : Cyclic Decomposition, Equivalence of matrices over PID, Finitely generated torsion modules, Classification of finitely generated modules over PID, Classification of Abelian groups.Modules over k[x] and linear operators : Review of linear operators on finite dimensional vector spaces, Canonical forms : Jordan Canonical form and Rational Canonical Form, and Applications.References:
Musili, C., (1994), Introduction to rings and modules, 2nd Edition, Narosa.
Dummit ,D.S., Foote, R.M. (2004), Abstract algebra, 3rd Edition, Wiley.
Luther, I.S., Passi, I.B.S., (2013), Algebra; Volume 3: Modules, 1st Edition, Narosa.
Roman, S., (2008), Advanced linear algebra, 3rd Edition, Springer.
Lang, S., (2002), Algebra, Revised Third Edition, Springer.
Cohn, P. M. Algebra, Vols.I, II, III, John Wiley and Sons, 1982, 1989, 1991.
3-Jan-2024 : Motivation and Introduction to the course
5-Jan-2024 : Definition of Module, Examples and Submodules
9-Jan-2024 : Left Module is same as additive abelian group M along with a ring homomorphism in to End(M)
10-Jan-2024 : No Class (Extra class will be scheduled to compensate)
12-Jan-2024 : Comparison of Free Modules and Vector Spaces
16-Jan-2024 : Quotient Modules and Free Modules over commutative ring with unity
17-Jan-2024 : Module Homomorphisms and Isomorphism Theorems
19-Jan-2024 : Simple Modules ( Class Test - 1 )
23-Jan-2024 : Basic results related to Modules over P.I.D
24-Jan-2024 : Modules with chain conditions
26-Jan-2024 : Republic Day
30-Jan-2024 : Modules of finite length
31-Jan-2024 : Jordan Holder Theorem
2-Feb-2024 : Industry Day (No class)
6-Feb-2024 : Rings with chain conditions
7-Feb-2024 : Discussion on Assignment I and II
9-Feb-2024 : Minor Examination-I
13-Feb-2024 : Hilbert Basis Theorem
14-Feb-2024 : Wedderburn Artin Theorem
16-Feb-2024 : IGNUS-2024
20-Feb-2024 : Structure of f.g. modules over PID : Cyclic Decomposition
21-Feb-2024 : Equivalence of matrices over a PID
23-Feb-2024 : Project Presentation By Nitish Kumar and Class test-II
27-Feb-2024 : Fundamental Theorem : Existence of Invariant factors
28-Feb-2024 : Elementary Divisor Form and p-primary components
1-March-2024 : Project Presentation By Abhishek Meena
5-March-2024 : Fundamental Theorem : Uniqueness
6-March-2024 : Fundamental Theorem of Finite Abelian groups
8-March-2024 : Holiday
12-March-2024 : Review of linear operators on finite dimensional vectors spaces
13-March-2024 : Project Presentation By Shahnaz
15-March-2024 : Project Presentation By Vishnu Kumar and Class test-III
18-March-2024 : Rational Canonical Form : Examples
19-March-2024 : Jordan Canonical Form : Examples
20-March-2024 : Discussion on Assignment III and IV
22-March-2024 : Minor Examination- II
26-March-2024 : Canonical Forms : More Examples
27-March-2024 : Rational Canonical form : Proof
29-March-2024 : Good Friday
2-April-2024 : Cayley Hamilton Theorem
3-April-2024 : Jordan Canonical form : Proof
5-April-2024 : Project Presentation By Pratik Rao and Class test-IV
9-April-2024 :
10-April-2024 :
12-April-2024 : Project Presentation By Dipendra and Class test-V
16-April-2024 :
17-April-2024 :
19-April-2024 : Project Presentation By Harshit
23-April-2024 :
24-April-2024 : Discussion on Assignments
26-April-2024 : Class Test-VI
Semisimple Modules (Nitish Kumar )
Tensor Products of Modules (Abhishek Meena)
Group Rings (Shahnaz)
The ring of endomorphisms of a finitely generated Modules (Vishnu Kumar)
Every Commutative Artinian ring is Noetherian (Pratik Rao)
Localisation of Rings (Dipendra Kumar Kumawat)
Exact Sequences- Projective, Injective, and Flat Modules (Harshit Jain)