Lecture 1: Multiple Regression Analysis: Introduction, Slides
Lecture 2: Multiple Regression Analysis: Properties, Slides, (Empirical example - WAGE2, VOTE1, code) (Interpreting STATA output SRM, MRM)
Lecture 3: Multiple Regression Analysis: Properties, Slides, (Empirical example - WAGE2, code)Â
Lecture 4: Multiple Regression Analysis: Properties, Slides
Lecture 5: Multiple Regression Analysis: Inference, Slides, (Empirical example - WAGE2, code)
Lecture 6: Multiple Regression Analysis: Inference, Slides, (F-distribution, code for FWL)Â
Lecture 7: Multiple Regression Analysis: Matrix Approach, Slides, (Empirical example - WAGE2, code) (Optional material - matrix algebra)
Lecture 8: Multiple Regression Analysis: Matrix Approach, Slides
Lecture 9: Multiple Regression Analysis: WLS & GLS, Slides, (Optional material - asymptotics)
Lecture 10: Rubin's Causal Model, Slides, (Potential outcomes framework)
Lecture 11: Rubin's Causal Model, Slides, (Potential outcomes framework)
Lecture 12: Instrumental Variables, Slides
Lecture 13: Instrumental Variables, Slides, (Empirical example - Paper, CARD, code)
Lecture 14: Panel Data and Fixed Effects, Slides, (Panel Data)
Lecture 15: Panel Data and Fixed Effects, Slides, (Additional material - slides, data, code)
Lecture 16: Panel Data and First Differences, Slides, (Empirical example - data, code)
Lecture 17: Difference-in-Differences, Slides, (Card and Krueger - code)
Lecture 18: Difference-in-Differences, Slides, (DiD)
Lecture 19: Clustering and Standard Errors, Slides, (Empirical example - data, code)
Lecture 20: Clustering and Standard Errors, Slides, (Optional material)
Lecture 21: Regression Discontinuity Design, Slides, (Simulation example - code, Additional material - RDD)
Lecture 22: Regression Discontinuity Design, Slides, (RDD in STATA, data, code, manipulation, data, code)
Lecture 23: Class Discussion on Causal Methods
Lecture 24: Class Presentations
Lecture 25: Class Presentations
Lecture 1: Introduction - Lower Pollution, Longer Lives (A Polluted Mind), (slides)
Lecture 2: Introduction - Market Failure and Pollution, (slides)
Lecture 3: Introduction - Mechanisms, (slides, Tax, PES)
Lecture 4: Space - Applications of Satellite Data, (slides, Data resources - NASA, ISRO, SHRUG, CEDA, FAOSTAT, GAEZ, WBOD, GIS with R)
Lecture 5: Space - Applications of Satellite Data, (Spatial data with STATA, NASA-FIRMS)
Lecture 6: Air - Group 1: The EKC Hypothesis
Lecture 7: Air - Group 1: The Critique of EKC Hypothesis