4th MICCAI Workshop on

Domain Adaptation and Representation Transfer (DART)

Towards Learning Transferable, Interpretable, and Robust Representations 

News

Twitter
Link

Description

Computer vision and medical imaging have been revolutionized by the introduction of advanced machine learning and deep learning methodologies. Recent approaches have shown unprecedented performance gains in tasks such as segmentation, classification, detection, and registration. Although these results (obtained mainly on public datasets) represent important milestones for the MICCAI community, most methods lack generalization capabilities when presented with previously unseen situations (corner-cases) or different input data domains. This limits clinical applicability of these innovative approaches and therefore diminishes their impact. Transfer learning, representation learning and domain adaptation techniques have been used to tackle problems such as: model training using small datasets while obtaining generalizable representations; performing domain adaptation via few-shot learning; obtaining interpretable representations that are understood by humans; and leveraging knowledge learned from a particular domain to solve problems in another. Through the third MICCAI workshop on Domain Adaptation and Representation Transfer (DART) we aim to continue the discussion forum to compare, evaluate and discuss methodological advancements and ideas that can improve the applicability of Machine Learning (ML) / Deep Learning (DL) approaches to clinical settings by making them robust and consistent across different domains. 

Previous Workshops

DART2021, DART2020, DART2019

DART'21

DART'20

DART'19

Sponsors

NVIDIA supports DART'22 by sponsoring the Best Paper Award!