[ABGE+23] F. Apruzzi, F. Bonetti, I. García Etxebarria, S. Hosseini, and S. Schafer-Nameki. Symmetry TFTs from String Theory. Commun. Math. Phys., 402(1):895–949, 2023.
[AJ90] M. Atiyah and L. Jeffrey. Topological Lagrangians and cohomology. J. Geom. Phys., 7:119–136, 1990.
[AS69] M. Atiyah and I. Singer. The index of elliptic operators on compact manifolds. Bull. Am. Math. Soc., 69:422–433, 1969.
[Ati85] M. Atiyah. Anomalies and Index Theory. In Winter School on Supersymmetry and Supergravity Nonperturbative QCD, pages 313-322, 1985.
[Ati86] M. Atiyah. Topological Aspects of Anomalies, 1986.
[Ati89] M. Atiyah. Topological quantum field theories. Inst. Hautes Etudes Sci. Publ. Math., 68:175–186, 1989.
[BBRT91] D. Birmingham, M. Blau, M. Rakowski, and G. Thompson. Topological field theory. Phys. Rept., 209:129–340, 1991.
[Bla93] M. Blau. The Mathai-Quillen formalism and topological field theory. J. Geom. Phys., 11:95–127, 1993.
[CF00] A. Cattaneo and G. Felder. A Path integral approach to the Kontsevich quantization formula. Commun. Math. Phys., 212:591–611, 2000.
[CMR95] S. Cordes, G. Moore, and S. Ramgoolam. Lectures on 2-d Yang-Mills theory, equivariant cohomology and topological field theories. Nucl. Phys. B Proc. Suppl., 41:184–244, 1995.
[Don83] S. Donaldson. An application of gauge theory to four-dimensional topology. J. Diff. Geom., 18(2):279– 315, 1983.
[DW90] R. Dijkgraaf and E. Witten. Topological Gauge Theories and Group Cohomology. Commun. Math. Phys., 129:393, 1990.
[Flo87] A. Floer. Morse theory for fixed points of symplectic diffeomorphisms. Bull. Am. Math. Soc., 16:279– 281, 1987.
[Flo88] A. Floer. An instanton-invariant for 3-manifolds. Communications in mathematical physics, 118:215– 240, 1988.
[Fre93] D. Freed. Lectures on topological quantum field theory. NATO Sci. Ser. C, 409:95–156, 1993.
[GKSW15] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett. Generalized Global Symmetries. JHEP, 02:172, 2015.
[Gro85] M. Gromov. Pseudo holomorphic curves in symplectic manifolds. Inventiones mathematicae, 82(2):307– 347, 1985.
[Hit87] N. Hitchin. The Selfduality equations on a Riemann surface. Proc. Lond. Math. Soc., 55:59–131, 1987.
[Kap10] A. Kapustin. Topological Field Theory, Higher Categories, and Their Applications. In International Congress of Mathematicians, 4 2010.
[KS14] A. Kapustin and N. Seiberg. Coupling a QFT to a TQFT and Duality. JHEP, 04:001, 2014.
[LL98] J. Labastida and C. Lozano. Lectures in topological quantum field theory. AIP Conf. Proc., 419(1):54– 93, 1998.
[McG21] J. McGreevy. Physics 239: Topology from Physics. Lecture Notes 2021.
[MQ86] V. Mathai and D. Quillen. Superconnections, Thom classes and equivariant differential forms. Topology, 25:85–110, 1986.
[Sch78] A. Schwarz. The Partition Function of Degenerate Quadratic Functional and Ray-Singer Invariants. Lett. Math. Phys., 2:247–252, 1978.
[Sch79] A. Schwarz. The Partition Function of a Degenerate Functional. Commun. Math. Phys., 67:1–16, 1979.
[Sch00] A. Schwarz. Topological quantum field theories. 11, 2000.
[SW94a] N. Seiberg and Edward Witten. Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory. Nucl. Phys. B, 426:19–52, 1994. [Erratum: Nucl.Phys.B 430, 485–486 (1994)].
[SW94b] N. Seiberg and Edward Witten. Monopoles, duality and chiral symmetry breaking in N=2 supersym- metric QCD. Nucl. Phys. B, 431:484–550, 1994.
[Wen90] X. G. Wen. Topological Order in Rigid States. Int. J. Mod. Phys. B, 4:239, 1990.
[Wit82] E. Witten. Supersymmetry and Morse theory. J. Diff. Geom., 17(4):661–692, 1982.
[Wit88a] E. Witten. Topological Quantum Field Theory. Commun. Math. Phys., 117:353, 1988.
[Wit88b] E. Witten. Topological Sigma Models. Commun. Math. Phys., 118:411, 1988.
[Wit89] E. Witten. Quantum Field Theory and the Jones Polynomial. Commun. Math. Phys., 121:351–399, 1989.
[Wit91] E. Witten. Introduction to cohomological field theories. Int. J. Mod. Phys. A, 6:2775–2792, 1991.
[Wit98] E. Witten. AdS / CFT correspondence and topological field theory. JHEP, 12:012, 1998.
[Wu95] S. Wu. On the Mathai-Quillen formalism of topological sigma models. J. Geom. Phys., 17:299–309, 1995.
[Zee95] A. Zee. Quantum Hall fluids. Lecture Notes Phys., 456:99–153, 1995.